K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

Ta thấy n.(n+1) là 2 số tự nhiên liên tiếp => n.(n+1)\(⋮\)2

        n.(n+1).(n+2) là 3 số tự nhiên liên tiếp=> n.(n+1).(n+2)\(⋮\)​3

=> n.(n+1).(n+2) chia hết cho 6 

27 tháng 11 2016

Giải :

Vì n thuộc N và n > 1

Ta có : n( n + 1 ) ( n + 2 ) = n ( n2- 1 ) = n2 . n - 1 . n = n3 - n

=) n3 - n = n( n + 1 ) ( n + 2 ) : hết cho 6 với mọi n thuộc N và n > 1 thì n( n + 1 ) ( n + 2 ) là tích của ba số tự nhiên liên tiếp

Do đó n( n + 1 ) ( n + 2 ) : hết cho 6 với mọi n thuộc N và n > 1

Vậy với n thuộc N , n > 1 thì n( n + 1 ) ( n + 2 ) : hết cho 6

26 tháng 12 2015

Ta xét theo 2 trường hợp của n: 

 - Chia hết cho 2

+ Nếu n chẵn =>n sẽ chia hết cho 2 

=>n.(n+1).(n+2) sẽ chia hết cho 2

+Nếu n lẻ =>n+1 sẽ chẵn và n+1 chia hết cho 2

=>n.(n+1).(n+2) sẽ chia hết cho 2

- Chia hết cho 3

+ Nếu n =3a=>n chia het cho 3=>n.(n+1).(n+2) chia hết cho 3

+Nếu n=3k+1 => n+2 sẽ chia hết cho 3 => n.(n+1).(n+2) chia hết cho 3

+Nếu n=3k+2=> n+1 chia hết cho 3=> n.(n+1).(n+2) chia hết cho 3

Từ đó suy ra, n.(n+1).(n+2) chia hết cho cả 2 và 3 , mà đã chia hết cho 2 và 3 sẽ chia hết cho 6. 

Kết luận...

tick nha

Ta thấy n + n2 = n x ( n + 1 ) . Tích của 2 só tự nhiên liên tiếp chỉ tận cùng = 0 , 2 , 6 do đó n2 + n + 6 chỉ tận cùng = 6 , 8 ,2 

ko chia hết cho 5

Mik viết lại nha :

  \(2n+n+6\)

\(=2n-2n+3n+6\)

\(=3n+6\)

\(=3\left(n+6\right)\)

=> \(2n+n+6\)chia hết cho 3 chứ ko chia hết cho 5 ( đpcm )

13 tháng 12 2017

đồ ngu =200004

13 tháng 12 2017

n2 + n + 1

= n . n + n + 1

= n . ( n + 1 ) + 1

Do n . ( n + 1 ) là hai số  liên tiếp => có tận cùng là : 0;2;6

=> n . ( n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7 không chia hết cho 2

Vậy n2.n+1 không chia hết cho 2

3 tháng 2 2019

Toi quen mat cach  lam roi xin loi nhe

26 tháng 12 2015

Vì đây là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho và có ít nhất 1 số chia hết cho 2 => tích đó chia hết cho cả 3 và 2 => tích chia hết cho BCNN(2; 3) = 6

3 tháng 6 2017

Ta có : \(A=10^n+18n-1=10^n-1-9n+27n\)

\(=99...9-9n+27n\)( n c/s 9 )

\(=9\left(11...1-n\right)+27n\)( n c/s 1 )

Vì : \(11...1-n⋮3\Rightarrow9\left(11...1-n\right)⋮27\)

Mà : \(27n⋮27\Rightarrow A⋮27\)

Vậy ...

3 tháng 6 2017

Ta có :

\(A=10^n+18n-1=10^n-1+18n-1+1\\ =\left(10^n-1\right)+18n\\ =\left(10^n-1^n\right)+18n\)

Ta có công thức :

\(a^m-b^m⋮a-b\) với mọi a;b thuộc R

\(\Rightarrow10^n-1^n⋮10-1\\ \Rightarrow10^n-1^n⋮9\\ \Rightarrow10^n-1-18n⋮9\left(\text{đ}pcm\right)\)

21 tháng 7 2016

a, ta có 2 trường hợp:

+) n chẵn =>n+10 = chẵn + chẵn = chẵn chia hết cho 2

+) n lẻ => n + 15 = lẻ + lẻ = chẵn chia hết cho 2

vậy (n+10)(n+15) chia hết cho 2(đpcm)