K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

Đặt \(A=\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}\)

Ta có : \(\left(2n+1\right)^2=4n^2+4n+1>4n^2+4n\Leftrightarrow\left(2n+1\right)^2>2n\left(2n+2\right)\)\(\Leftrightarrow\frac{1}{\left(2n+1\right)^2}< \frac{1}{2n\left(2n+2\right)}\)

Mà \(\hept{\begin{cases}\frac{1}{3^2}< \frac{1}{2.4}\\\frac{1}{5^2}< \frac{1}{4.6}\\\frac{1}{7^2}< \frac{1}{6.8}\end{cases}}\)

\(...............\)

\(\frac{1}{\left(2n+1\right)^2}< \frac{1}{2n\left(2n+2\right)}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n\left(2n+2\right)}=B\)

\(=\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{2n+2-2n}{2n\left(2n+2\right)}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n}-\frac{1}{2n+2}\)

\(=\frac{1}{2}-\frac{1}{2n+2}< \frac{1}{2}\Rightarrow B< \frac{1}{4}\)

\(\Rightarrow A< B< \frac{1}{4}\Rightarrow A< \frac{1}{4}\) hay đpcm

18 tháng 11 2017

Giả sử E là số tự nhiên

Biến đổi E ta có :

\(E=\frac{3n^2}{2n^2+n-1}+\frac{1}{n+1}=\frac{3n^2}{\left(n+1\right)\left(2n-1\right)}+\frac{2n-1}{\left(n+1\right)\left(2n-1\right)}=\frac{3n^2+2n-1}{\left(n+1\right)\left(2n-1\right)}\)

\(=\frac{\left(n+1\right)\left(3n-1\right)}{\left(n+1\right)\left(2n-1\right)}=\frac{3n-1}{2n-1}\)

Do E là số tự nhiên \(\Rightarrow\left(3n-1\right)⋮\left(2n-1\right)\)

\(\Leftrightarrow2\left(3n-1\right)⋮\left(2n-1\right)\Rightarrow\left[2\left(3n-1\right)-3\left(2n-1\right)\right]⋮2n-1\)

\(\Leftrightarrow\left(6n-2-6n+3\right)⋮\left(2n-1\right)\Leftrightarrow1⋮\left(2n-1\right)\)

\(\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

Xét \(2n-1=1\Rightarrow n=1\left(KTM:n>1;\text{loại}\right)\)

Xét \(2n-1=-1\Rightarrow n=0\left(KTM:n>1;\text{loại}\right)\)

Vậy ko có số tự nhiên n > 1 nào để \(\left(3n-1\right)⋮\left(2n-1\right)\) hay 3n - 1 ko chia hết cho 2n - 1

=> điều giả sử là sai hay E ko thể là số tự nhiên (đpcm)

19 tháng 6 2017

Gọi d là UCLN(n+3,2n+5)

=> n+3:d , 2n+5:d

=>2n+6:d , 2n+5:d

=>2n+6 - 2n+5 :d

=> 1: d

Vậy n+3/2n+5 là phan so toi gian

Minh nhanh nhat nen cho minh nhe

28 tháng 2 2018

gọi \(\text{Ư}CLN_{\left(n+3;2n+5\right)}=d\)

\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)

\(\Rightarrow2n+6-\left(2n+5\right)⋮d\)

\(\Rightarrow2n+6-2n-5⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

vậy phân số \(\frac{n+3}{2n+5}\) là phân số tối giản