K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

Đáp án A

Câu 1 : Phương trình nào trong các phương trình dưới đây là phương trình bậc nhất ?A. 7 - x - 3x2 = x - 3x2 B. 4 - x = - ( x - 1)C. 3 - x + x2 = x2 - x - 2 D. ( x - 3 )( x + 5 ) = 0Câu 2 : Phương trình nào dưới đây có tập nghiệm là S = {3; -1}A. ( x + 3)(x - 1) = 0 B. x2 + 3x + 2 = 0C. x( x – 3)(x + 1)2 = 0 D. ( x – 3)(x + 1) = 0Câu 3 : Phương trình nào dưới đây có vô số nghiệm ?A. ( x + 3 )( x2 + 5 ) = 0. B. x2 = - 9C. x3 = - 27 D. 5x -...
Đọc tiếp

Câu 1 : Phương trình nào trong các phương trình dưới đây là phương trình bậc nhất ?

A. 7 - x - 3x2 = x - 3x2 B. 4 - x = - ( x - 1)

C. 3 - x + x2 = x2 - x - 2 D. ( x - 3 )( x + 5 ) = 0

Câu 2 : Phương trình nào dưới đây có tập nghiệm là S = {3; -1}

A. ( x + 3)(x - 1) = 0 B. x2 + 3x + 2 = 0

C. x( x – 3)(x + 1)2 = 0 D. ( x – 3)(x + 1) = 0

Câu 3 : Phương trình nào dưới đây có vô số nghiệm ?

A. ( x + 3 )( x2 + 5 ) = 0. B. x2 = - 9

C. x3 = - 27 D. 5x - 3 + 3x = 8x - 3

Câu 4 : Phương trình - 2x2 + 11x - 15 = 0 có tập nghiệm là:

A. 3 B. C . D.

Câu 5. Điều kiện xác định của phương trình là:

A hoặc x ≠ -3 B.; C. và x ≠ - 3; D. x ≠ -3

Câu 6. Biết và CD = 21 cm. Độ dài của AB là:

A. 6 cm B. 7 cm; C. 9 cm; D. 10 cm

Câu 7. Cho tam giác ABC, AM là phân giác (hình 1). Độ dài đoạn thẳng MB bằng:

A. 1,7 B. 2,8 C. 3,8 D. 5,1

Câu 8. Trong Hình 2 biết MM' // NN', MN = 4cm, OM’ = 12cm và M’N’ = 8cm. Số đo của đoạn thẳng OM là:

A. 6cm; B. 8cm; C. 10cm; D. 5cm

Hình 1 Hình

2
22 tháng 7 2021

1.B

2.D

3.B

4;5;6;7;8( bạn sửa lại đề nhé )

 

 

Câu 1: B

Câu 2: D

Câu 3: B

21 tháng 12 2019

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

1.

$(x-2)(x-5)=(x-3)(x-4)$

$\Leftrightarrow x^2-7x+10=x^2-7x+12$
$\Leftrightarrow 10=12$ (vô lý)

Vậy pt vô nghiệm.

2.

$(x-7)(x+7)+x^2-2=2(x^2+5)$

$\Leftrightarrow x^2-49+x^2-2=2x^2+10$
$\Leftrightarrow 2x^2-51=2x^2+10$

$\Leftrightarrow -51=10$ (vô lý)

Vậy pt vô nghiệm.

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

3.

$(x-1)^2+(x+3)^2=2(x-2)(x+2)$
$\Leftrightarrow (x^2-2x+1)+(x^2+6x+9)=2(x^2-4)$
$\Leftrightarrow 2x^2+4x+10=2x^2-8$

$\Leftrightarrow 4x+10=-8$

$\Leftrightarrow 4x=-18$

$\Leftrightarrow x=-4,5$

4.

$(x+1)^2=(x+3)(x-2)$

$\Leftrightarrow x^2+2x+1=x^2+x-6$

$\Leftrightarrow x=-7$ 

 

9 tháng 1 2021

Câu 1 : 

a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)

\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)

\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)

Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)

tương tự 

16 tháng 5 2021

\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)

\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)

\(< =>95-24x+40=6-4x-15x+5\)

\(< =>-24x+135=-19x+11\)

\(< =>5x=135-11=124\)

\(< =>x=\frac{124}{5}\)

23 tháng 11 2023

1: \(2^x=64\)

=>\(x=log_264=6\)

2: \(2^x\cdot3^x\cdot5^x=7\)

=>\(\left(2\cdot3\cdot5\right)^x=7\)

=>\(30^x=7\)

=>\(x=log_{30}7\)

3: \(4^x+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+3\cdot2^x-2^x-3=0\)

=>\(\left(2^x+3\right)\left(2^x-1\right)=0\)

=>\(2^x-1=0\)

=>\(2^x=1\)

=>x=0

4: \(9^x-4\cdot3^x+3=0\)

=>\(\left(3^x\right)^2-4\cdot3^x+3=0\)

Đặt \(a=3^x\left(a>0\right)\)

Phương trình sẽ trở thành:

\(a^2-4a+3=0\)

=>(a-1)(a-3)=0

=>\(\left[{}\begin{matrix}a-1=0\\a-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\left(nhận\right)\\a=3\left(nhận\right)\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3^x=1\\3^x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

5: \(3^{2\left(x+1\right)}+3^{x+1}=6\)

=>\(\left[3^{x+1}\right]^2+3^{x+1}-6=0\)

=>\(\left(3^{x+1}\right)^2+3\cdot3^{x+1}-2\cdot3^{x+1}-6=0\)

=>\(3^{x+1}\left(3^{x+1}+3\right)-2\left(3^{x+1}+3\right)=0\)

=>\(\left(3^{x+1}+3\right)\left(3^{x+1}-2\right)=0\)

=>\(3^{x+1}-2=0\)

=>\(3^{x+1}=2\)

=>\(x+1=log_32\)

=>\(x=-1+log_32\)

6: \(\left(2-\sqrt{3}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\left(\dfrac{1}{2+\sqrt{3}}\right)^x+\left(2+\sqrt{3}\right)^x=2\) 

=>\(\dfrac{1}{\left(2+\sqrt{3}\right)^x}+\left(2+\sqrt{3}\right)^x=2\)

Đặt \(b=\left(2+\sqrt{3}\right)^x\left(b>0\right)\)

Phương trình sẽ trở thành:

\(\dfrac{1}{b}+b=2\)

=>\(b^2+1=2b\)

=>\(b^2-2b+1=0\)

=>(b-1)2=0

=>b-1=0

=>b=1

=>\(\left(2+\sqrt{3}\right)^x=1\)

=>x=0

7: ĐKXĐ: \(x^2+3x>0\)

=>x(x+3)>0

=>\(\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\)
\(log_4\left(x^2+3x\right)=1\)

=>\(x^2+3x=4^1=4\)

=>\(x^2+3x-4=0\)

=>(x+4)(x-1)=0

=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Bài 1: 

c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)

Ta có: \(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)

\(\Leftrightarrow\dfrac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\dfrac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\dfrac{6x+8}{\left(4x-1\right)\left(4x+1\right)}\)

Suy ra: \(-12x-3=8x-2-6x-8\)

\(\Leftrightarrow-12x-3-2x+10=0\)

\(\Leftrightarrow-14x+7=0\)

\(\Leftrightarrow-14x=-7\)

\(\Leftrightarrow x=\dfrac{1}{2}\)(nhận)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)

29 tháng 8 2021

1) \(2\left(x+3\right)>5\left(x-1\right)+2\Leftrightarrow2x+6>5x-5+2\Leftrightarrow3x>9\Leftrightarrow x>3\)

2) \(x^2-x\left(x+2\right)>3x-10\)

\(\Leftrightarrow x^2-x^2-2x>3x-10\Leftrightarrow5x< 10\Leftrightarrow x< 2\)

3) \(x\left(x-5\right)< \left(x+1\right)^2\)

\(\Leftrightarrow x^2-5x< x^2+2x+1\Leftrightarrow7x>-1\Leftrightarrow x>-\dfrac{1}{7}\)

4) \(15-2\left(x-7\right)< 2\left(x-3\right)-6\)

\(\Leftrightarrow15-2x+14< 2x-6-6\Leftrightarrow4x>41\Leftrightarrow x>\dfrac{41}{4}\)

1: Ta có: \(2\left(x+3\right)>5\left(x-1\right)+2\)

\(\Leftrightarrow2x+6>5x-5+2\)

\(\Leftrightarrow-3x>-9\)

hay x<3

2: Ta có: \(x^2-x\left(x+2\right)>3x-10\)

\(\Leftrightarrow x^2-x^2-2x>3x-10\)

\(\Leftrightarrow-5x>-10\)

hay x<2

3: Ta có: \(x\left(x-5\right)\le\left(x+1\right)^2\)

\(\Leftrightarrow x^2-5x-x^2-2x-1\ge0\)

\(\Leftrightarrow-7x\ge1\)

hay \(x\le-\dfrac{1}{7}\)