tìm giá trị nguyên của x để biểu thức trên cũng có giá trị nguyện
x mũ 3 - 2x mũ 2 + 4 / x - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(ĐKXĐ:x\ne-\frac{1}{2}\)
\(A=\left(x+1\right)+\frac{2}{2x+1}\) vì \(x\in Z\) nên A nguyên thì \(\frac{2}{2x+1}\) nguyên
Hay \(2x+1\) là ước của 2 . Nên :
\(2x+1=2\Rightarrow x=\frac{1}{2}\) ( loại )
\(2x+1=1\Rightarrow x=0\) ( t/m)
\(2x+1=-1\Rightarrow x=-1\) ( t/m)
\(2x+1=-2\Rightarrow x=-\frac{3}{2}\) ( loại )
Với \(x=0;x=-1\) thì A nhận giá trị nguyên
Chúc bạn học tốt !!!
`@` `\text {Ans}`
`\downarrow`
`(-x^4 - x^3) + (x^4 + 2x^3 + 5x^2 + 3x) + (-5x^2 - 3x - x^3)`
`= -x^4 - x^3 + x^4 + 2x^3 + 5x^2 + 3x - 5x^2 - 3x - x^3`
`= (-x^4+x^4) + (-x^3 + 2x^3 - x^3) + (5x^2 - 5x^2) + (3x - 3x)`
`= 0 + 0 + 0 + 0`
`= 0`
Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.
`@` `\text {Kaizuu lv uuu}`
a: Để A nguyên thì \(2x-3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{2;1;5;-2\right\}\)
a) \(P\left(x\right)=3x^3-2x+2x^2+7x+8-x^4)\)
\(P\left(x\right)=3x^3(-2x+7x)+2x^2+8-x^4)\)
\(P\left(x\right)=3x^3+5x+2x^2+8-x^4)\)
\(P\left(x\right)=-x^4+3x^3+2x^2+5x+8\)
\(Q\left(x\right)=2x^2-3x^3+3x^2-5x^4\)
\(Q\left(x\right)=(2x^2+3x^2)-3x^3-5x^4\)
\(Q\left(x\right)=5x^2-3x^3-5x^4\)
\(Q\left(x\right)=-5x^4-3x^2+5x^2\)
b)
\(P\left(x\right)+Q\left(x\right)=(3x^3-2x+2x^2+7x+8-x^4)+\left(2x^2-3x^3+3x^2-5x^4\right)\)
\(P\left(x\right)+Q\left(x\right)=3x^3-2x+2x^2+7x+8-x^4+2x^2-3x^3+3x^2-5x^4\)
\(P\left(x\right)+Q\left(x\right)=\left(3x^3-3x^3\right)+\left(-2x+7x\right)+\left(2x^2+2x^2+3x^2\right)+8+\left(-x^4-5x^4\right)\)\(P\left(x\right)+Q\left(x\right)=5x+7x^2+8-6x^4\)
Vậy: \(R\left(x\right)\) \(=5x+7x^2+8-6x^4\)
c. \(R\left(x\right)\) \(=5x+7x^2+8-6x^4\)
\(=5x+7x^2+4+4-6x^4\)
\(=\) \((12x-4)^2+4\ge4-6x^4\)
Câu c MIK KHÔNG CHẮC LÀ ĐÚNG
\(\dfrac{2x^3+x^2+2x+2}{2x+1}\left(đk:x\ne-\dfrac{1}{2}\right)=\dfrac{\left(2x+1\right)\left(x^2+1\right)}{2x+1}+\dfrac{1}{2x+1}=x^2+1+\dfrac{1}{2x+1}\)
Do x nguyên nên để biểu thức trên có giá trị nguyên thì :
\(1⋮2x+1\Rightarrow2x+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow x\in\left\{0;-1\right\}\)
\(\dfrac{2x^3+x^2+2x+2}{2x+1}\)
\(=\dfrac{2x^3+x^2+2x+1+1}{2x+1}\)
\(=x^2+1+\dfrac{1}{2x+1}\)
Để đó là số nguyên thì \(1⋮2x+1\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2x\in\left\{0;-2\right\}\)
hay \(x\in\left\{0;-1\right\}\)
`@` `\text {Ans}`
`\downarrow`
`2,`
`(x^3 - 2x^2 + 2) - (3x^3 + 4x^2 - 3) + (2x^3 + 6x^2)`
`= x^3 - 2x^2 + 2 - 3x^3 - 4x^2 + 3 + 2x^3 + 6x^2`
`= (x^3 - 3x^3 + 2x^3) + (-2x^2 - 4x^2 + 6x^2) + (2+3)`
`= 0 + 0 + 5`
`= 5`
Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.
Bn phá ngoặc ra rồi tính như bình thường, biểu thức = 5
=> biểu thức không phụ thuộc vào giá trị biến ( đpcm )
Bài 1:
a) \(x^2+5x=x\left(x+5\right)< 0\) (1)
Nhận thấy: \(x< x+5\)
nên từ (1) \(\Rightarrow\) \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 0\\x>-5\end{cases}}\)\(\Leftrightarrow\)\(-5< x< 0\)
Vậy.....
b) \(3\left(2x+3\right)\left(3x-5\right)< 0\)
TH1: \(\hept{\begin{cases}2x+3>0\\3x-5< 0\end{cases}}\)\(\Leftrightarrow\) \(\hept{\begin{cases}x>-\frac{3}{2}\\x< \frac{5}{3}\end{cases}}\)\(\Leftrightarrow\)\(-\frac{3}{2}< x< \frac{5}{3}\)
TH2: \(\hept{\begin{cases}2x+3< 0\\3x-5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{3}{2}\\x>\frac{5}{3}\end{cases}}\) vô lí
Vậy \(-\frac{3}{2}< x< \frac{5}{3}\)
Bài 2:
a) \(2y^2-4y=2y\left(y-2\right)>0\)
TH1: \(\hept{\begin{cases}y>0\\y-2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>0\\y>2\end{cases}}\)\(\Leftrightarrow\)\(y>2\)
TH2: \(\hept{\begin{cases}y< 0\\y-2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< 0\\y< 2\end{cases}}\)\(\Leftrightarrow\)\(y< 0\)
Vậy \(\orbr{\begin{cases}y< 0\\y>2\end{cases}}\)
b) \(5\left(3y+1\right)\left(4y-3\right)>0\)
TH1: \(\hept{\begin{cases}3y+1>0\\4y-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>-\frac{1}{3}\\y>\frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y>\frac{3}{4}\)
TH2: \(\hept{\begin{cases}3y+1< 0\\4y-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< -\frac{1}{3}\\y< \frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y< -\frac{1}{3}\)
Vậy \(\orbr{\begin{cases}y>\frac{3}{4}\\y< -\frac{1}{3}\end{cases}}\)
\(A=\dfrac{2x+2}{x+3}.\left(x\ne-3\right).\)
\(A=2+\dfrac{-4}{x+3}.\)
Để \(A\in Z.\Leftrightarrow2+\dfrac{-4}{x+3}\in Z.\Leftrightarrow x+3\inƯ\left(-4\right)=\left\{1;-1;2;-2;4;-4\right\}.\)
\(\Rightarrow x\in\left\{-2;-4;-1;-5;1;-7\right\}.\)
Bài làm
ĐKXĐ : x ≠ 2
Ta có : \(\frac{x^3-2x^2+4}{x-2}=\frac{x^2\left(x-2\right)+4}{\left(x-2\right)}=\frac{x^2\left(x-2\right)}{x-2}+\frac{4}{x-2}=x^2+\frac{4}{x-2}\)
Vì x nguyên => x2 nguyên
=> Để phân thức có giá trị nguyên thì \(\frac{4}{x-2}\)có giá trị nguyên
=> \(4⋮\left(x-2\right)\)
=> \(\left(x-2\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Các giá trị trên đều tmđk x ≠ 2
Vậy x ∈ { -2 ; 0 ; 1 ; 3 ; 4 ; 6 }
để bth trên có gtr nguyên thì x^3-2x^2+4 chia hết x-2
ta có: x^3-2x^2+4 = x^2(x-2)+4
vì x^2(x-2) chia hết cho x-2 với mọi x
nên để x^3-2x^2+4 chia hết cho x-2
thì 4 chia hết cho x-2
=> x-2 thuộc vào ước của 4
=>x-2 thuộc {+-1;+-2;+-4;0}
=> x = {2;3;1;4;0;6;-2}