K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
28 tháng 11 2020

a) \(C=\left(\frac{a+2}{3a}+\frac{2}{a+1}-3\right).\frac{a+1}{2-4a}+\frac{a^2-3a+1}{3a}\)

\(C=\left(\frac{\left(a+2\right)\left(a+1\right)}{3a\left(a+1\right)}+\frac{2.3a}{3a\left(a+1\right)}-\frac{3.3a.\left(a+1\right)}{3a\left(a+1\right)}\right).\frac{a+1}{2-4a}+\frac{a^2-3a+1}{3a}\)

\(C=\frac{a^2+3a+2+6a-9a^2-9a}{3a\left(a+1\right)}.\frac{a+1}{2-4a}+\frac{a^2-3a+1}{3a}\)

\(C=\frac{-8a^2+2}{3a\left(a+1\right)}.\frac{a+1}{2\left(1-2a\right)}+\frac{a^2-3a+1}{3a}\)

\(C=\frac{2\left(1-2a\right)\left(1+2a\right)}{3a\left(a+1\right)}.\frac{a+1}{2\left(1-2a\right)}+\frac{a^2-3a+1}{3a}\)

\(C=\frac{1+2a}{3a}+\frac{a^2-3a+1}{3a}\)

\(C=\frac{a^2-a+2}{3a}\)

DD
28 tháng 11 2020

b) \(C=\frac{a^2-a+2}{3a}\)

Để \(C\inℤ\)thì \(a^2-a+2=a\left(a-1\right)+2⋮3\)

\(a=3k\left(k\inℤ\right)\)\(a\left(a-1\right)+2=3k\left(3k-1\right)+2⋮̸3\)

\(a=3k+1\left(k\inℤ\right)\)\(a\left(a-1\right)+2=\left(3k+1\right).3k+2⋮̸3\)

\(a=3k+2\left(k\inℤ\right)\)\(a\left(a-1\right)+2=\left(3k+2\right)\left(3k+1\right)+2=9k^2+9k+4⋮̸3\)

Vậy không có giá trị nào của \(a\inℤ\)để \(C\inℤ\).

23 tháng 6 2021

a, \(M=\left[\frac{2}{3a}-\frac{2}{a+1}\left(\frac{a+1}{3a}-a-1\right)\right]:\frac{a-1}{a}\)ĐK : \(a\ne\pm1;0\)

\(=\left[\frac{2}{3a}-\frac{2}{a+1}\left(\frac{a+1-3a^2-3a}{3a}\right)\right]:\frac{a-1}{a}\)

\(=\left[\frac{2}{3a}-\frac{2}{a+1}\left(\frac{-3a^2-2a+1}{3a}\right)\right]:\left(\frac{a-1}{a}\right)\)

\(=\left[\frac{2}{3a}+\frac{2}{a+1}.\frac{\left(a+1\right)\left(3a-1\right)}{3a}\right]:\left(\frac{a-1}{a}\right)\)

\(=\left(\frac{2}{3a}+\frac{2\left(3a-1\right)}{3a}\right):\left(\frac{a-1}{a}\right)=\frac{2a}{a-1}\)

b, Để P nguyên \(\frac{2a}{a-1}=\frac{2\left(a-1\right)+2}{a-1}=2+\frac{2}{a-1}\)

Vì 2 nguyên nên \(\frac{2}{a-1}\)cũng phải nguyên 

\(\Rightarrow a-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

a - 11-12-2
a2 ( tm )0 ( tm )3 (tm )-1 (tm)

c, Ta có : \(P\le1\Rightarrow\frac{2a}{a-1}\le1\Leftrightarrow\frac{2a}{a-1}-1\le0\)

\(\Leftrightarrow\frac{a+1}{a-1}\le0\)mà a + 1 > a - 1 

\(\hept{\begin{cases}a+1\ge0\\a-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ge-1\\a\le1\end{cases}\Leftrightarrow-1\le}a\le1}\)

Kết hợp với đk vậy \(-1< a< 1;a\ne0\)thì \(P\le1\)

27 tháng 9 2020

a) \(ĐK:a\ne1;a\ne0\)

\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

b) Ta có: \(a^2+4\ge4a\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)

Khi đó \(\frac{4a}{a^2+4}\le1\)

Vậy MaxA = 1 khi x = 2

27 tháng 9 2020

•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ★T&T★ Idol cho em hỏi là, cái chỗ \(\left(a-2\right)^2\ge0\) thì tại sao Khi đó: \(\frac{4a}{a^2+4}\le1\)

Mong Idol pro giải thích hộ em chỗ này :((

24 tháng 3 2020

a) \(a\ne0;a\ne1\)

\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)

\(=\left[\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right]\cdot\frac{4a^2}{a\left(a^2+4\right)}\)

\(=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(=\frac{a^3-1}{a^3-1}\cdot\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

Vậy \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

b) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

M>0 khi 4a>0 => a>0

Kết hợp với ĐKXĐ

Vậy M>0 khi a>0 và a\(\ne\)1

c) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

\(M=\frac{4a}{a^2+4}=\frac{\left(a^2+4\right)-\left(a^2-4a+4\right)}{a^2+4}=1-\frac{\left(a-2\right)^2}{a^2+4}\)

Vì \(\frac{\left(a-2\right)^2}{a^2+4}\ge0\forall a\)nên \(1-\frac{\left(a-2\right)^2}{a^2+4}\le1\forall a\)

Dấu "=" <=> \(\frac{\left(a-2\right)^2}{a^2+4}=0\)\(\Leftrightarrow a=2\)

Vậy \(Max_M=1\)khi a=2

28 tháng 3 2023

mik thắc mắc tại sao 3a lại mất vậy

 

22 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}a\ne1\\a\ne0\end{cases}}\)

\(M=\left(\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right)\div\frac{a^3+4a}{4a^2}\)

\(\Leftrightarrow M=\left(\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right):\frac{a^2+4}{4a}\)

\(\Leftrightarrow M=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(\Leftrightarrow M=\frac{a^3-3a^2+3a-1-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(\Leftrightarrow M=\frac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a^2}{a^2+4}\)

\(\Leftrightarrow M=\frac{4a^2}{a^2+4}\)

b) Ta có : \(\frac{4a^2}{a^2+4}=\frac{4\left(a^2+4\right)-16}{a^2+4}\)

\(=4-\frac{16}{a^2+4}\)

Để M đạt giá trị lớn nhất 

\(\Leftrightarrow\frac{16}{a^2+4}\)min

\(\Leftrightarrow a^2+4\)max

\(\Leftrightarrow a\)max

Vậy để M đạt giá trị lớn nhất thì a phải đạ giá trị lớn nhất.

\(=\left[\dfrac{\left(a-1\right)^2}{a^2+a+1}+\dfrac{2a^2-4a-1}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{1}{a-1}\right]:\dfrac{2a}{3}\)

\(=\dfrac{a^3-3a^2+3a-1+2a^2-4a-1+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}\)

\(=\dfrac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}=\dfrac{3}{2a}\)

27 tháng 9 2021

a) ĐKXĐ : \(\hept{\begin{cases}a\ne0\\a\ne-1\\a\ne1\end{cases}}\)

Khi đó P = \(\left[\frac{2}{3a}-\frac{2}{a+1}\left(\frac{a+1}{3a}-a-1\right)\right]:\frac{a-1}{a}\)

\(=\left[\frac{2}{3a}-\frac{2}{a+1}.\frac{a+1}{3a}+\frac{2}{a+1}.\left(a+1\right)\right]:\frac{a-1}{a}\)

\(=\left(\frac{2}{3a}-\frac{2}{3a}+2\right):\frac{a-1}{a}=2:\frac{a-1}{a}=\frac{2a}{a-1}\)

b) Ta có P = \(\frac{2a}{a-1}=\frac{2a-2+2}{a-1}=2+\frac{2}{a-1}\)

\(P\inℤ\Leftrightarrow2⋮a-1\Leftrightarrow a-1\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)

<=> \(a\in\left\{2;3;0;-1\right\}\)

c) Để P \(\le1\)

<=> \(\frac{2a}{a-1}\le1\)

<=> \(\frac{a+1}{a-1}\le0\)

Xét 2 trường hợp 

TH1 : \(\hept{\begin{cases}a+1\ge0\\a-1\le0\end{cases}}\Leftrightarrow-1\le a\le1\)

Kết hợp điều kiện => -1 < a < 1 (a \(\ne0\))

TH2 : \(\hept{\begin{cases}a+1\le0\\a-1\ge0\end{cases}}\Leftrightarrow a\in\varnothing\)

Vậy - 1 < a < 1 (a \(\ne0\))