Giải vvaf biện luận
a, /mx+2m/=/m+1/
b, /mx+2x/=/mx+-1/
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>mx+2m=x+1 hoặc mx+2m=-x-1
=>x(m-1)=-2m+1(1) hoặc x(m+1)=-2m-1
Để (1) có nghiệm thì m-1<>0
=>m<>1
Để (1) vô nghiệm thì m-1=0
=>m=1
Để (2 có nghiệm thì m+1<>0
=>m<>-1
Để (2) có nghiệm thì m+1=0
=>m=-1
b: =>mx+2x=mx-1 hoặc mx+2x=-mx+1
=>x=-1/2 hoặc x(m+2+m)=1
=>x=-1/2 hoặc x(2m+2)=1(3)
Để (3) có nghiệm thì 2m+2<>0
=>m<>-1
Để (3) vô nghiệm thì 2m+2=0
=>m=-1
a)ĐKXĐ: \(x\ne1\)
\(\dfrac{mx+1}{x-1}=1\Rightarrow mx+1=x-1\Leftrightarrow\left(m-1\right)x=-2\)
Nếu \(m=1\Rightarrow0x=-2\left(VN\right)\)
Nếu \(m\ne1\)
\(\left(1\right)\Rightarrow x=\dfrac{-2}{m-1}\)
Vậy nếu m=1 thì phương trình vô nghiệm
n khác 1 thì phương trình có nghiệm \(x=\dfrac{-2}{m-1}\)
b) ĐKXĐ: x khác -1
\(\dfrac{\left(m-2\right)x+3}{x+1}=2m-1\Rightarrow\left(m-2\right)x+3=\left(x+1\right)\left(2m-1\right)\\ \Leftrightarrow\left(m-2\right)x+3=\left(2m-1\right)x+2m-1\Leftrightarrow\left(2m-1\right)x-\left(m-2\right)x=3-\left(2m-1\right)\\ \Leftrightarrow\left(m+1\right)x=4-2m\)
Nếu m =-1 thì \(0x=6\left(VN\right)\)
Nếu m khác -1 thì phương trình có nghiệm duy nhất \(x=\dfrac{4-2m}{m+1}\)
mk lm câu khó nhất trong các câu này , rồi bn làm tương tự với các câu còn lại nha .
d) ta có : \(\left\{{}\begin{matrix}2x-y=3+2m\\mx+y=\left(m+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x-3-2m=m^2+2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x=m^2+4m+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\\left(m+2\right)x=\left(m+2\right)^2\end{matrix}\right.\).....(1)
th1: \(m+2=0\Leftrightarrow m=-2\)
khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\0x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\in R\\y=2x+1\end{matrix}\right.\)
\(\Rightarrow\) phương trình có vô số nghiệm
th2: \(m+2\ne0\Leftrightarrow m\ne-2\)
khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\x=m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
\(\Rightarrow\) phương trình có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
vậy khi +) \(m=-2\) phương trình có vô số nghiệm
+) khi \(m\ne-2\) phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)