GTNN của biểu thức (2x +3)(3x -4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-2x^3+3x^2-4x+2005=\left(x^4-2x^3+x^2\right)+2\left(x^2-2x+1\right)+2003=\left(x^2-x\right)^2+2\left(x-1\right)^2+2003\)
Vì \(\left(x^2-x\right)^2\ge0\forall x,\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow x^4-2x^3+3x^2-4x+2005\ge0+0+2013=2013\)
\(ĐTXR\Leftrightarrow x=1\)
\(A=x^4-2x^3+3x^2-4x+7\)
\(=\left(x^4-2x^3+x^2\right)+\left(2x^2-4x+2\right)+5\)
\(=\left(x^2-x\right)^2+2\left(x-1\right)^2+5\ge5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2-x=0\\x-1=0\end{cases}\Rightarrow x=1}\)
Vậy \(A_{min}=5\Leftrightarrow x=1\)
a.
\(A=\left(x^4+y^2+1-2x^2y+2x^2-2y\right)+2\left(y^2-2y+1\right)+2026\)
\(A=\left(x^2-y+1\right)^2+2\left(y-1\right)^2+2026\ge2026\)
\(A_{min}=2026\) khi \(\left(x;y\right)=\left(0;1\right)\)
b.
Đặt \(x-1=t\Rightarrow x=t+1\)
\(\Rightarrow A=\dfrac{3\left(t+1\right)^2-8\left(t+1\right)+6}{t^2}=\dfrac{3t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+3=\left(\dfrac{1}{t}-1\right)^2+2\ge2\)
\(A_{min}=2\) khi \(t=1\Rightarrow x=2\)
\(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{3x^2-8x+6}{\left(x-1\right)^2}=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
Dấu \("="\Leftrightarrow x=2\)
\(B=x\left(2x-1\right)=2x^2-x=2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{1}{8}=2\left(x-\dfrac{1}{4}\right)^2-\dfrac{1}{8}\ge-\dfrac{1}{8}\)
\(minB=-\dfrac{1}{8}\Leftrightarrow x=\dfrac{1}{4}\)
\(C=x\left(3x+4\right)=3x^2+4x=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{4}{3}=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minC=-\dfrac{4}{3}\Leftrightarrow x=-\dfrac{2}{3}\)
`B=x(2x-1)`
`=2x(x-1/2)`
`=2(x^2-1/2x)`
`=2(x^2-1/2x+1/16)-1/8`
`=2(x-1/4)^2-1/8>=-1/8`
Dấu "=" xảy ra khi `x=1/4`
`C=x(3x+4)`
`=3x(x+4/3)`
`=3(x^2+4/3x)`
`=3(x^2+4/3x+4/9)-4/3`
`=3(x+2/3)^2-4/3>=-4/3`
Dấu "=" xảy ra khi `x=-2/3`
( 2x + 3 )( 3x - 4 )
= 6x2 - 8x + 9x - 12
= 6x2 + x - 12
= 6( x2 + 1/6x + 1/144 ) - 289/24
= 6( x + 1/12 )2 - 289/24 ≥ -289/24 ∀ x
Dấu "=" xảy ra khi x = -1/12
=> GTNN của biểu thức = -289/24 <=> x = -1/12