Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(7x\left(x+1\right)-3\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(7x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\7x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{7}\end{matrix}\right.\)
b) 3(x + 8) - x2 - 8x = 0
=> 3(x + 8) - (x2 + 8x) = 0
=> 3(x + 8) - x(x + 8) = 0
=> (x + 8)(3 - x) = 0 => \(\left[{}\begin{matrix}x+8=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-8\\x=3\end{matrix}\right.\)
c) \(x^2-10x=-25\Rightarrow x^2-10x+25=0\Rightarrow\left(x-5\right)^2=0\Rightarrow x=5\)
d) Giống câu c
a)
b) 3(x + 8) - x2 - 8x = 0
=> 3(x + 8) - (x2 + 8x) = 0
=> 3(x + 8) - x(x + 8) = 0
=> (x + 8)(3 - x) = 0 =>
c)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x+5\right|=x+5\\\left|x-5\right|=5-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5>=0\\x-5< =0\end{matrix}\right.\Leftrightarrow-5< =x< =5\)
d: \(=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
a: TH1: x>=2
A=x+x-2=2x-2
TH2: x<2
A=x+2-x=2
b: TH1: x>=3
A=x-3-x=-3
TH2: x<3
A=3-x-x=-2x+3
c: TH1: x>=1
C=x-x+1=1
TH2: x<1
C=x+x-1=2x-1
d: TH1: m>=3
C=m-3-2m=-3-m
TH2: m<3
C=-m+3-2m=-3m+3
e: TH1: m>=1
E=m-m+1=1
TH2: m<1
E=m+m-1=2m-1
a) Ta có: \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1\)
\(\Leftrightarrow\sqrt{x-1}=\sqrt{x-1}+1+1\)(Vô lý)
Vậy: \(S=\varnothing\)
b) Ta có: \(\sqrt{x^4+2x^2+1}=\sqrt{x^2+10x+25}-10x+22\)
\(\Leftrightarrow x^2+1=\left|x+5\right|-10x+22\)
\(\Leftrightarrow\left|x+5\right|=x^2+1+10x-22=x^2+10x-21\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2+10x-21\left(x\ge-5\right)\\-x-5=x^2+10x-21\left(x< -5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+10x-21-x-5=0\\x^2+10x-21+x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+9x-26=0\\x^2+11x-16=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-9+\sqrt{185}}{2}\\x=\dfrac{-11-\sqrt{185}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=2-x\)
=>\(\left(x-5\right)^2=\left(2-x\right)^2\) và x<=2
=>x^2-10x+25=x^2-4x+4 và x<=2
=>-10x+25=-4x+4 và x<=2
=>-6x=-21 và x<=2
=>x=7/2 và x<=2
=>\(x\in\varnothing\)
\(\sqrt{x^2-10x+25}=2-x\\ < =>\sqrt{\left(x-5\right)^2}=2-x\\ < =>\left|x-5\right|=2-x\)
\(< =>x-5=\left[{}\begin{matrix}2-x\left(x-5\ge0< =>x\ge5\right)\\x-2\left(x-5< 0< =>x< 5\right)\end{matrix}\right.\)
với `x>=5`
`x-5=2-x`
`<=>2x=7`
`<=>x=7/2` (vô lí)
với `x<5`
`x-5=x-2`
`<=>0x=3` (vô lí)
Vậy phương trình vô nghiệm
a) 10x(x-y) - 8y(y-x)
= 10x(x-y) + 8y(x-y)
= (10x-8y)(x-y)
b) x^2 - 2xy + y^2 - 25
=( x- y)^2 - 25
= ( x- y- 5 )( x- y+ 5 )
c) 5x^2 + 10x^2y + 5xy^2
= 5( x^2 + 2x^2y + xy^2)
= 5x ( x + 2xy + y^2)
( 5x^3 hay 5x^2)
x^2+25=10x
=> x^2-10x+25=0
=> (x-5)^2=0
=>x-5=0
=>x=5
a, \(5x\left(x-1\right)=x-1\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\Leftrightarrow x=\frac{1}{5};1\)
b, \(x^2+25=10x\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)