K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2019

a/b=1+1/2+1/3+...+1/99+1/100

16 tháng 3 2019

\(\frac{a}{b}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{99}+\frac{1}{100}\)

\(\frac{a}{b}=\frac{59400+29700+19800+600+594}{59400}\)

\(\frac{a}{b}=\frac{110094}{59400}\)

\(\frac{a}{b}=\frac{18349}{9900}\)

\(\Rightarrow a=18349\)

Mà  \(18349:101=181dư68\)

Vậy đề sai

8 tháng 10 2018

Ta có : \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

             \(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

              \(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

             \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

              \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

              \(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(B=\frac{2015}{51}+\frac{2015}{52}+...+\frac{2015}{100}\)

    \(=2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)

\(\Rightarrow\) \(\frac{B}{A}=\frac{2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=2015\)

\(\Rightarrow\) \(B⋮A\)

28 tháng 1 2016

giải bằng phép đồng dư giúp mk

em sin lỗi em mới lớp 5

12 tháng 1 2016

ta có 1^3 +2^3+3^3+...+100^3=(1+2+3+4+...+100)^2 \(\Rightarrow\) A chia hết cho B (sách toán 6 tập 1 có đấy)

Tick mk nhé