K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2020

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)

\(\left(x^2+4x+x+4\right)\left(x^2+2x+3x+6\right)-24\)

\(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

Đặt \(x^2+5x+4=a\) ta có

\(a.\left(a+2\right)-24\)

\(a^2+2a-24\)

\(a^2+6a-4a-24\)

\(a\left(a+6\right)-4\left(a+6\right)\)

\(\left(a+6\right)\left(a-4\right)\)

\(\left(x^2+5x+4+6\right)\left(x^2+5x+4-4\right)\)

\(\left(x^2+5x+10\right)\left(x^2+5x\right)\)

11 tháng 11 2020

   \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

   Đặt \(x^2+5x+5=a\)

   Suy ra  \(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

               \(=\left(a+1\right)\left(a-1\right)-24\)

                 \(=a^2-1-24=a^2-25=\left(a-5\right)\left(a+5\right)\)

  Do đó 

         \(\left(a+5\right)\left(a-5\right)=x\left(x^2+5x+10\right)\left(x+5\right)\)

               Vậy \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=x\left(x^2+5x+9\right)\left(x+5\right)\)

1 tháng 7 2021

Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(\left(x+1\right)\left(x+4\right)\right)\left(\left(x+2\right)\left(x+3\right)\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

- Đặt \(x^2+5x+5=a\)

\(=\left(a-1\right)\left(a+1\right)-24=a^2-1-24=a^2-25\)

\(=\left(a-5\right)\left(a+5\right)\)

1 tháng 7 2021

–9x^3 + 12x – 4y^2

2 tháng 6 2018

Xét riêng (x + y)^4 = [(x + y)^2]^2 = [x^2+2xy+y^2]^2 = x^4 +4x^2y^2 + y^4 + 4x^3y + 2x^2y^2+4xy^3
Vậy (x + y)^4 +x^4 + y^4 = x^4 +4x^2y^2 + y^4 + 4x^3y + 2x^2y^2+4xy^3+ x^4 + y^4 
= 2x^4 + 2y^4 + 6x^2y^2 + 4x^3y + 4xy^3 
= 2(x^4 + y^4 + 3x^2y^2 +2 x^3y + 2xy^3) 
= 2(x^4 + y^4 + x^2y^2 + 2x^3y + 2xy^3 + 2x^2y^2) 
= 2(x^2 + xy + y^2)^2

9 tháng 7 2017

( x+2)(x+5)(x+3)(x+4) -24=

=(x\(^2\)+7x+ 10)(x\(^2\)+7x +12) -24

Đặt (x\(^2\)+7x+ 11)=a ta được 

(a-1)(a+1)-24=

= a\(^2\)-1-24=a\(^2\)-25=(a-5)(a+5)

b.4x\(^4\)+81= (2x\(^2\))\(^2\)+ 9\(^2\)+2.9.2x\(^2\)-2.9.2x\(^2\)= ( 2x\(^2\)+9)\(^2\)-36x\(^2\)= ( 2x\(^2\)+9-6x)( 2x\(^2\)+9+6x)

30 tháng 9 2015

= (x+1)(x+4)(x+2)(x+3)-24

= (x2 +5x+4) (x2 +5x+6)-24

  Đặt x+5x+4 =a

=>(x2 +5x+4)(x2+5x+6)-24

= a(a+2)-24 = a+2a-24

= a2 +6a-4a-24

= a(a+6) - 4(a+6) = (a-4)(a+6)

= (x2 +5x+a-4)(x2 +5x+4+6) = (x2 +5x)(x2 +5x+10)

        

18 tháng 8 2016

=(x+1)(x+4)(x+2)(x+3) - 24

=(x^2+5x+4)(x^2+5x+6) - 24

=(x^2+5x+5-1)(x^2+5x+5+1) - 24 [hằng đẳng thức a^2-b^2 nha] 

=(x^2+5x+5)^2-1^2-24

=(x^2+5x+5)^2 - 25

=(x^2+5x+5)^2 - 5^2

=(x^2+5x+5-5)(x^2+5x+5+5)

=(x^2+5x)(x^2+5x+10

26 tháng 6 2017

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

Đặt \(x^2+5x+4=t\)

\(\Rightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=t\left(t+2\right)-24\)

\(=t^2+2t+1-25\)

\(=\left(t+1\right)^2-5^2\)

\(=\left(t+1+5\right)\left(t+1-5\right)\)

\(=\left(t+6\right)\left(t-4\right)\)

\(=x\left(x+5\right)\left(x^2+5x+10\right)\)

5 tháng 8 2017

Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\)\(\left(x+4\right)-24\)

\(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\) (*)

. Đặt \(x^2+5x+4=t\) (1)

(*) <=> \(t\left(t+2\right)-24=t^2+2t-24=\left(t-4\right)\left(t+6\right)\) (2)

Thay (1) vào (2) ta suy ra : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\) \(\left(x+4\right)-24=\)\(\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\) = \(\left(x^2+5x\right)\left(x^2+5x+10\right)\) = \(x\left(x+5\right)\left(x^2+5x+10\right)\)

5 tháng 8 2017

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

\(=\left(x^2+5x+4\right)^2+2.\left(x^2+5x+4\right)+1-25\)

\(=\left(x^2+5x+4+1\right)^2-5^2\)

\(=\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

\(=x\left(x+5\right)\left(x^2+5x+10\right)\)

23 tháng 9 2016

(x+1)(x+4)(x+2)(x+3)-24

=(x2+5x+4)(x2+5x+6)-24

=(x2+5x+5-1)(x2+5x+5+1)-24

=(x2+5x+5)2-1-24

=(x2+5x+5)2-25

=x(x2+5x+10)(x+5)

25 tháng 11 2017

Nhân tử là gì bạn ơi

giờ này còn đi hỏi bài làm gì

Sao em không tự làm đi

Đã ngu đã giốt còn hay hỏi nhiều

5 tháng 2 2020

Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

\(\left(x^2+5x+4\right)^2+2.\left(x^2+5x+4\right)+1-25\)

\(=\left(x^2+5x+5\right)-5^2\)

\(=x\left(x+5\right)\left(x^2+5x-10\right)\)

5 tháng 2 2020

M=(x^2+5x+4)(x^2+5x+6)-24

Đặt x^2+5x+5 là a        (1)

Từ 2 đk trên=>M=(a-1)(a+1)-24

=>M=a^2 - 1-24

=a^2-25

=(a-5)(a+5) và (1)

=(x^2+5x+5-5)(x^2+5x+5+5)

=(x^2+5x)(x^2+5x+10)

25 tháng 10 2021

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\\ =\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\\ =\left(x^2+7x+11\right)^2-1-24\\ =\left(x^2+7x+11\right)^2-25\\ =\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\\ =\left(x^2+7x+6\right)\left(x^2+7x+16\right)\\ =\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

25 tháng 10 2021

chữ đẹp thế :>>