K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

hơi vô lý

23 tháng 7 2020

Trả lời:

1, \(27^{20}-3^{56}=\left(3^3\right)^{20}-3^{56}\)

                          \(=3^{60}-3^{56}\)

                          \(=3^{55}.\left(3^5-3\right)\)

                          \(=3^{55}.\left(243-3\right)\)

                         \(=3^{55}\times240\)\(⋮240\)

Vậy \(27^{20}-3^{56}\)chia hết cho 240

2, Ta có: \(3a+7b⋮19\)

\(\Leftrightarrow2.\left(3a+7b\right)⋮19\)

\(\Leftrightarrow6a+14b⋮19\)

\(\Leftrightarrow6a+33b-19b⋮19\)

\(\Leftrightarrow3.\left(2a+11b\right)-19b⋮19\)

Do \(19b\)chia hết cho 19. Theo t/c chia hết của 1 hiệu thì \(3.\left(2a+11b\right)⋮19\Leftrightarrow2a+11b⋮19\)

Vậy \(2a+11b\)chia hết cho 19

7 tháng 3 2017

a/ Ta có:

\(8^5+2^{11}=\left(2^3\right)^5+2^{11}\)

\(=2^{15}+2^{11}=2^{11}\left(2^4+1\right)=17.2^{11}\)

Vậy \(\left(8^5+2^{11}\right)⋮17\)

b/ Sửa đề là chứng minh chia hết cho 44

\(19^{19}+69^{19}=\left(19+69\right)A\) (A là tổng của các số còn lại không quan trọng nên ký hiện vậy cho gọn)

\(=88A\) mà 88 chia hết cho 44

\(\Rightarrow\left(19^{19}+69^{19}\right)⋮44\)

10 tháng 11 2020

19^19+69^19

=(19+69)(19^18-19^17.69+19^16.69^2-..............................-19.69^17+69^18)

=88(19^18+................+69^18) chia hết cho 44

6 tháng 4 2018

a) Ta có: \(8^5+2^{11}\)

\(=\left(2^3\right)^5+2^{11}\)

\(=2^{15}+2^{11}\)

\(=2^{11}\left(2^4+1\right)\)

\(=2^{11}.17⋮17\left(đpcm\right)\)

21 tháng 2 2017

bạn Tiến dũng trương giải tào lao quá, không biết làm thì đừng cmt linh tinh nhé!

19 là số nguyên tố thì \(19^n\)làm sao chia hết cho 44 được

Giải: CHÚ Ý: mình dùng dấu = cho mod vì không gõ được

Ta có: \(19^5\)=-1 (mod 44) => \(19^{19}=\left(-1\right)^3.19^4=-37=7\left(mod44\right)\)

\(69^5=11\left(mod44\right)\Rightarrow69^{69}=1^{13}.69^4=37\left(mod44\right)\)

=> \(19^{19}+69^{69}=7+37=0\left(mod44\right)\)

vậy chia hết cho 44

Cách 2:

Ta có: \(A=69^{69}+19^{19}=\left(69^{69}+19^{69}\right)-\left(19^{69}-19^{19}\right)\)

Ta có: \(69^{69}+19^{69}⋮\left(19+69\right)\Rightarrow69^{69}+19^{69}⋮44\)

Phải CM \(19^{69}-19^{19}⋮44\), Thật vậy

\(B=19^{19}\left(19^{50}-1\right)\)

do 19 lẻ nên \(19^2=1\left(mod4\right)\)\(\Rightarrow19^{50}=1\left(mod4\right)\Rightarrow19^{50}-1⋮4\)

Có: \(19^{50}=8^{50}\left(mod11\right)\)mà 

\(8^5=1\left(mod11\right)\Rightarrow8^{50}=1\left(mod11\right)\Leftrightarrow19^{50}=1\left(mod11\right)\Rightarrow19^{50}-1⋮11\)

Mà (4,11)=1

=> \(19^{69}-19^{19}⋮44\)

=> A chia hết cho 44 (ĐPCM)

20 tháng 2 2017

(19^9) mod 44=0 suy ra 19^19 chia het cho 44

(69^6) mod 44=0 suy ra 69^69 chia het cho 44

suy ra .....19^19+69^69 chia het cho 44

7 tháng 12 2018

= -12

k mk nhé bn

7-19=-12

Hk tốt

....nha 

Đang kiếm hỏi đáp