Cho từ giác ABCD lồi. Chứng minh BD^2 + AC^2 =< AD^2 + BC^2 + 2AB*CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
ΔOAB vuông tại O
=>AB^2=AO^2+BO^2
ΔBOC vuông tại O
=>BC^2=BO^2+CO^2
ΔAOD vuông tại O
=>AD^2=AO^2+DO^2
ΔDOC vuông tại O
=>DC^2=OC^2+OD^2
AB^2+BC^2+CD^2+DA^2
=OA^2+OB^2+OC^2+OD^2+OA^2+OB^2+OC^2+OD^2
=2(OA^2+OB^2+OC^2+OD^2)
2:
AB^2+CD^2
=OA^2+OB^2+OC^2+OD^2
=OA^2+OD^2+OB^2+OC^2
=AD^2+BC^2
a) \(AB^2+CD^2=OA^2+OB^2+OC^2+OD^2=\left(OA^2+OD^2\right)+\left(OB^2+OC^2\right)=AD^2+BC^2\)b) -Áp dụng định lí:
Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền.
\(OM+ON+OP+OQ=\dfrac{1}{2}AB+\dfrac{1}{2}BC+\dfrac{1}{2}CD+\dfrac{1}{2}DA=\dfrac{1}{2}\left(AB+BC+CD+DA\right)\)
cho mình xin lỗi ,câu c mình ghi sai 1 câu nhưng ko quan trọng lắm
"hình bình hành có 2 cạnh kề bằng nhau là hình thoi,bạn xem lại nhan,do mình bấm vội nhưng giải đúng đó
bạn ghi đề sai rồi ,phải là AB=BC=AD và CD=2AB nhan
hình bạn tự vẽ đi nhan
câu a:ta có AB//CD(vì ABCD là hình thang) nên góc BDC=góc ABD(1)
lại có AD=AB(gt)nên tamgiacs ADB cân tại A nên góc ABD=góc ADB(2)
từ (1) và (2) ta có góc ADB =góc BDC nên BD là phân giác goc ADC
câu b:xét tam giác ADC và tam giác BDC ,có
AD=BC(gt);DC :chung và góc D=góc C(vì ABCD là hình thang cân) nên 2 tam giác này bằng nhau nên AC=BD
câu c:gọi K là trung điểm CD ,ta có AB=1/2 CD =CK,mà AB=BC(gt)nên BC=CK(3)
lại có AB=1/2CD=DK mà AB//DK(vì ABCD là hình thang) nên ABKD là hình bình hành
mặt khác AB=AD(gt) nên ABKD là hình thoi(vì hình bình nhành có 2 cạnh bên bằng nhau là hình thoi đó)
=>BK=AB mà BC=AB =>BK=BC(4)
từ (3)và (4)=>BK=BC=CK nên BCK là tam giác đều nên góc C=60 độ và bằng góc D,=> góc A=120độ và bằng góc B
XONG,MỎI TAY QUÁ BN K CHO MÌNH NHAN,BYE
Xét tứ giác ABCD
Ta có:AD=BC và AC=BD(gt)
-> tứ giác ABCD là hính thang cân (t/c hình thang cân)
bạn tự vẽ hình nhé
Xét tứ giác ABCD
Ta có:AD=BC và AC=BD(gt)
-> tứ giác ABCD là hính thang cân (t/c hình thang cân)