Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo bài ra ta có:
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\\ \Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}=\dfrac{2ab}{2cd}\)
áp dụng tính chất dãy tỉ số bàng nhau ta có:
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}=\dfrac{2ab}{2cd}=\dfrac{a^2+b^2+2ab}{c^2+d^2+2cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}\\ \Rightarrow\dfrac{c\left(a+b\right)}{a\left(c+d\right)}=\dfrac{b\left(c+d\right)}{d\left(a+b\right)}\\ \Rightarrow\dfrac{ca+cb}{ca+ad}=\dfrac{bc+bd}{ad+bd}\)áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{ca+cb}{ca+ad}=\dfrac{bc+bd}{ad+bd}=\dfrac{\left(ca+cb\right)-\left(bc+bd\right)}{\left(ca+ad\right)-\left(ad+bd\right)}=\dfrac{ca-bd}{ca-bd}=1\\ \Rightarrow ca+cb=ca+ad\\ \Rightarrow cb=ad\\ \Rightarrow ad=bc\left(đpcm\right)\)
a: Xét ΔABI và ΔDCI có
IA=ID
\(\widehat{AIB}=\widehat{DIC}\)
IB=IC
Do đó: ΔABI=ΔDCI
Suy ra: \(\widehat{ABI}=\widehat{DCI}\)
mà hai góc này ở vị trí so le trong
nên AB//CD
b: Ta có: AB//CD
mà AB\(\perp\)AC
nên CD\(\perp\)AC
c: Xét tứ giác ABDC có
I là trung điểm của AD
I là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: BC=AD
a) xét tam giác AIB và tam giác CID có:
AI=IC (GT)
góc AIB= góc CID (2 góc đối đỉnh)
BI=ID (GT)
suy ra tam giác AIB và tam giác CID (CGC)
suy ra góc BAC = góc ACD (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
suy ra AB//CD
b) xét tam giác AID và tam giác CIB có:
IA=IC (GT)
góc AID = góc BIC (2 góc so le trong)
IB=ID (GT)
suy ra tam giác AID= tam giác CIB (CGC)
suy ra góc ADB= góc DBC (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
suy ra AD//CD
c) vì tam giác AID = tam giác CIB (CMT)
suy ra AD=BC (2 góc tương ứng)
xet tam giac ABC va tam giac CDA co
AD=BC (gt)
BC=AD(gt)
AC là cạnh chung
=>tam giac abc = tam giac cda (c.c.c)
Ma goc BAC = goc DCA (nam o vi tri so le trong )
=>AB//CD
giúp mik vs mik cần gấp