1 Tìm GTNN
P = ( x^2 + 4x + 1 ) – 12 ( x + 2 )^2 + 2093
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(x^2+4x+1\right)^2-12\left(x+2\right)^2+2093\)
\(P=\left(x^2+4x+1\right)^2-12\left(x^2+4x+1\right)+2093\)
\(P=\left(x^2+4x+1\right)^2-12\left(x^2+4x+1+3\right)+2093\)
Đặt: \(a=x^2+4x+1\)
\(\Rightarrow P=a^2-12\left(a+3\right)+2093\)
\(P=a^2-12a-36+2093\)
\(P=a^2-12a+2057\)
\(P=a^2-12a+36+2021\)
\(P=\left(a^2-2\cdot6\cdot a+6^2\right)+2021\)
\(P=\left(a-6\right)^2+2021\)
Ta có: \(\left(a-6\right)^2\ge0\forall a\)
\(\Rightarrow P=\left(t-6\right)^2+2021\ge2021\)
\(\Rightarrow P\ge2021\Rightarrow P_{min}=2021\)
Dấu "=" xảy ra: \(\left(t-6\right)^2=0\Leftrightarrow t-6=0\Leftrightarrow t=6\)
Vậy: \(P_{min}=2021\) khi \(t=6\)
Mà: \(t=6\Rightarrow x^2+4x+1=6\)
\(\Leftrightarrow x^2+4x+1-6=0\)
\(\Leftrightarrow x^2+4x-5=0\)
\(\Leftrightarrow x^2-x+5x-5=0\)
\(\Leftrightarrow x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Vậy: \(P_{min}=2021\) khi \(\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
\(P=\left(x^2+4x+1\right)^2-12\left(x+2\right)^2+2093\\ P=\left(x^2+4x+1\right)^2-12\left(x^2+4x+4\right)+2093\\ P=\left(x^2+4x+1\right)^2-2\left(x^2+4x+1\right).6-36+2093\\ P=\left(x^2+4x+1\right)^2-2\left(x^2+4x+1\right).6+36+2021\\ P=\left(x^2+4x-5\right)^2+2021\ge2021\)
Dấu "=" xảy ra tương đương với \(\left\{{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
a) \(A=x^2-4x-2=\left(x^2-4x+4\right)-6=\left(x-2\right)^2-6\ge-6\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy Min(A) = -6 khi x = 2
b) \(B=\left(x-1\right)\left(2x+3\right)-12\)
\(B=2x^2+x-3-12\)
\(B=2\left(x^2+\frac{x}{2}+\frac{1}{16}\right)-\frac{121}{8}\)
\(B=2\left(x+\frac{1}{4}\right)^2-\frac{121}{8}\ge-\frac{121}{8}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(2\left(x+\frac{1}{4}\right)^2=0\Rightarrow x=-\frac{1}{4}\)
Vậy \(Min_B=-\frac{121}{8}\Leftrightarrow x=-\frac{1}{4}\)
A = x2 - 4x - 2
= ( x2 - 4x + 4 ) - 6
= ( x - 2 )2 - 6 ≥ -6 ∀ x
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MinA = -6 <=> x = 2
B = ( x - 1 )( 2x + 3 ) - 12
= 2x2 + x - 3 - 12
= 2x2 + x - 15
= 2( x2 + 1/2x + 1/16 ) - 121/8
= 2( x + 1/4 )2 - 121/8 ≥ -121/8 ∀ x
Đẳng thức xảy ra <=> x + 1/4 = 0 => x = -1/4
=> MinB = -121/8 <=> x = -1/4
1)
a) \(M=\)\(x^2\)\(+\)\(4x\)\(+\)\(9\)
\(=\)\(x^2\)\(+\)\(2x\)\(.\)\(2\)\(+\)\(4\)\(+\)\(5\)
\(=\left(x+2\right)^2\)\(+\)\(5\)\(>;=\)\(5\)
Dấu bằng xảy ra khi x + 2 = 0
x = -2
Vậy GTNN của M bằng 5 khi x = -2
b) \(N=\)\(x^2\)\(-\)\(20x\)\(+\)\(101\)
\(=\)\(x^2\)\(-\)\(2x\)\(.\)\(10\)\(+\)\(100\)\(+\)\(1\)
\(=\)\(\left(x-10\right)^2\)\(+\)\(1\)\(>;=\)\(1\)
Dấu bằng xảy ra khi x - 10 = 0
x = 10
Vậy GTNN của N bằng 1 khi x = 10
2)
a) \(C=\)\(-y^2\)\(+\)\(6y\)\(-\)\(15\)
\(=\)\(-y^2\)\(+\)\(2y\)\(.\)\(3\)\(-\)\(9\)\(-\)\(6\)
\(=\)\(-\left(y-3\right)^2\)\(-\)\(6\)\(< ;=\)\(6\)
Dấu bằng xảy ra khi y - 3 = 0
y = 3
Vậy GTLN của C bằng -6 khi y = 3
b) \(B=\)\(-x^2\)\(+\)\(9x\)\(-\)\(12\)
\(=\)\(-x^2\)\(+\)\(2x\)\(.\)\(\frac{9}{2}\)\(-\)\(\frac{81}{4}\)\(+\)\(\frac{81}{4}\)\(-\)\(12\)
\(=\)\(-\left(x-\frac{9}{2}\right)^2\)\(+\)\(\frac{33}{4}\)\(< ;=\)\(\frac{33}{4}\)
Dấu bằng xảy ra khi \(x-\frac{9}{2}=0\)
\(x=\frac{9}{2}\)
Vậy GTLN của B bằng \(\frac{33}{4}\)khi x = \(\frac{9}{2}\)
a) M = x2 + 4x + 9 = x2 + 4x + 4 + 5 = (x + 2)2 + 5
Vì : \(\left(x+2\right)^2\ge0\forall x\in R\)
Nên M = (x + 2)2 + 5 \(\ge5\forall x\in R\)
Vậy Mmin = 5 khi x = -2
b) N = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1
Vì \(\left(x-10\right)^2\ge0\forall x\in R\)
Nên : N = (x - 10)2 + 1 \(\ge1\forall x\in R\)
Vậy Nmin = 1 khi x = 10
Bài 2 :
a) C = -y2 + 6y - 15 = -(y2 - 6y + 15) = -(y2 - 6y + 9 + 6) = -(y2 - 6y + 9) - 6 = -(y - 3)2 - 6
Vì \(-\left(y-3\right)^2\le0\forall x\in R\)
Nên : C = -(y - 3)2 - 6 \(\le-6\forall x\in R\)
Vậy Cmin = -6 khi y = 3
b) B = -x2 + 9x - 12 = -(x2 - 9x + 12) = -(x2 - 9x + \(\frac{81}{4}-\frac{33}{4}\)) = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\)
Vì \(-\left(x-\frac{9}{2}\right)^2\le0\forall x\in R\)
Nên : B = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\) \(\le\frac{33}{4}\forall x\in R\)
Vậy Bmin = \(\frac{33}{4}\) khi \(x=\frac{9}{2}\)
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
Đề có đúng không ? Nếu đúng thì chỉ tìm được Max thôi
P = x2 + 4x + 1 - 12( x + 2 )2 + 2093
= x2 + 4x - 12( x2 + 4x + 4 ) + 2094
= x2 + 4x - 12x2 - 48x - 48 + 2094
= -11x2 - 44x + 2046
= -11( x2 + 4x + 4 ) + 2090
= -11( x + 2 )2 + 2090 ≤ 2090 ∀ x
Dấu "=" xảy ra khi x = -2
=> MaxP = 2090 <=> x = -2
ko tìm đc Min hả bạn