giúp mk vs
A=x(x+y)-5(x+y) với x=1;y=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2.\left(-6\right)=13\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3.\left(-6\right).1=19\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=13.19-\left(-6\right)^2.1=211\)
b) \(x^2+y^2=\left(x-y\right)^2+2xy=1^1+2.6=13\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+3.6.1=19\)
\(x^5-y^5=\left(x^2+y^2\right)\left(x^3-y^3\right)+x^2y^2\left(x-y\right)=13.19+6^2.1=283\)
Ta có: \(\frac{5}{x}-\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{5}{x}=\frac{1}{8}+\frac{y}{4}\)
=> \(\frac{5}{x}=\frac{1+2y}{8}\)
=> (1 + 2y)x = 40 = 1 . 40 = 2.20 = 5 . 8 = 4 . 10
Vì 1 + 2y là số lẽ nên => 1 + 2y \(\in\)1; 5;-1;-5
Lập bảng :
x | 8 | 10 | -8 | -10 |
1 + 2y | 5 | 1 | -5 | -1 |
y | 2 | 0 | -3 | -1 |
Vậy ...
b) Ta có: \(\frac{x}{5}+\frac{1}{10}=\frac{1}{y}\)
=> \(\frac{2x+1}{10}=\frac{1}{y}\)
=> (2x + 1).y = 10 = 1 . 10 = 2. 5
Vì 2x + 1 là số lẽ => 2x + 1 \(\in\){1; 5; -1; -5}
Lập bảng: tương tự câu a
c) Như câu b.
a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7};x+y+z=56\)
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=4.5=20\\z=4.7=28\end{matrix}\right.\)
b) \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\left(1\right);2x-y=5,5\)
\(\left(1\right)\Rightarrow\dfrac{2x-y}{1,1.2-1,3}=\dfrac{5,5}{0,9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=1,1.\dfrac{5,5}{0,9}=\dfrac{6,05}{0,9}\\y=1,3.\dfrac{5,5}{0,9}=\dfrac{7,15}{0,9}\\z=\dfrac{1,4}{1,1}.x=\dfrac{1,4}{1,1}.\dfrac{6,05}{0,9}=\dfrac{8,47}{0,99}\end{matrix}\right.\)
d) \(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5};xyz=-30\)
\(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5}=\dfrac{xyz}{2.3.5}=\dfrac{-30}{30}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=3.\left(-1\right)=-3\\z=5.\left(-1\right)=-5\end{matrix}\right.\)
a, (x+1)×(y+3)=5
=> x+1 và y+3 \(\in\) Ư(5) = {-1;-5;1;5}
ta có bảng sau :
x+1 | -1 | -5 | 1 | 5 |
y+3 | -5 | -1 | 5 | 1 |
x | -2 | -6 | 0 | 4 |
y | -8 | -4 | 2 | -2 |
vậy các cặp số (x;y) thỏa mãn là : (-2; -8); (-6; -4); (0; 2); (4; -2)
b, ko bt làm!
c, x2 + xy + y = 22
=> x.x + xy + y = 22
=> x(x+y) + x + y = 22 + y
=> x(x+y) + 1(x+y) = 22 + y
bí ròi
a)\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{98}{48}=\frac{49}{23}\)
suy ra :
\(\frac{x}{10}=\frac{49}{23}\Rightarrow x=\frac{490}{23}\)
\(\frac{y}{15}=\frac{49}{23}\Rightarrow y=\frac{735}{23}\)
\(\frac{z}{21}=\frac{49}{23}\Rightarrow z=\frac{1029}{23}\)
bạn xem lại đề ra số hơi xấu
\(A=\left(x-5\right)\left(x+y\right)\) thay vào:
\(A=\left(1-5\right)\left(1+2\right)=-4.3=-12\)
\(A=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)
\(=\left(1+2\right)\left(1-5\right)=3.\left(-4\right)=-12\)