Tìm x
\(x^4-5x^3+x^2+15x-12=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(5x-3\right)\left(3x+1\right)-\left(15x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\left(15x^2-4x-3\right)-\left(15x^2-29x-2\right)=0\)
\(\Rightarrow15x^2-4x-3-15x^2+29x+2=0\)
\(\Rightarrow25x-1=0\)
\(\Rightarrow x=\dfrac{1}{25}\)
\(----------\)
\(b,x^2+\left(x+5\right)\left(x-3\right)-25=0\)
\(\Rightarrow x^2+x^2+2x-15-25=0\)
\(\Rightarrow2x^2+2x=40\)
\(\Rightarrow2x\left(x+1\right)=40\)
\(\Rightarrow x\left(x+1\right)=20\)
\(\Rightarrow x;x+1\) là ước của 20
mà \(x;x+1\) là hai số nguyên liên tiếp \(\left(x\in Z\right)\)
nên \(x\left(x+1\right)=4.5=\left(-5\right).\left(-4\right)=20\)
\(\Rightarrow x\in\left\{4;-5\right\}\)
a: =>15x^2+5x-9x-3-15x^2+30x-x+2=0
=>25x-1=0
=>x=1/25
b: =>x^2+x^2+2x-15-25=0
=>2x^2+2x-40=0
=>x^2+x-20=0
=>(x+5)(x-4)=0
=>x=4 hoặc x=-5
1, \(3x\left(x-7\right)+2x-14=0\)
\(\Rightarrow3x\left(x-7\right)+2\left(x-7\right)=0\)
\(\Rightarrow\left(x-7\right)\left(3x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=\frac{-2}{3}\end{cases}}\)
2, \(x^3+3x^2-\left(x+3\right)=0\)
\(\Rightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm1\end{cases}}\)
3, \(15x-5+6x^2-2x=0\)
\(\Rightarrow\left(15x-5\right)+\left(6x^2-2x\right)=0\)
\(\Rightarrow5\left(3x-1\right)+2x\left(3x-1\right)=0\)
\(\Rightarrow\left(3x-1\right)\left(5+2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\5+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{-5}{2}\end{cases}}\)
4, \(5x-2-25x^2+10x=0\)
\(\Rightarrow\left(5x-25x^2\right)-\left(2-10x\right)=0\)
\(\Rightarrow5x\left(1-5x\right)-2\left(1-5x\right)=0\)
\(\Rightarrow\left(1-5x\right)\left(5x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}1-5x=0\\5x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{2}{5}\end{cases}}\)
2: Ta có: \(x^4-4x^3-9x^2+8x+4=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2-12x^2+12x-4x+4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-12x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-12x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2-5x^2-10x-2x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)-5x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-5x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x^2-5x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{5-\sqrt{33}}{2}\\x=\dfrac{5+\sqrt{33}}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-2;\dfrac{5-\sqrt{33}}{2};\dfrac{5+\sqrt{33}}{2}\right\}\)
1: Ta có: \(x^4+5x^3+10x^2+15x+9=0\)
\(\Leftrightarrow x^4+x^3+4x^3+4x^2+6x^2+6x+9x+9=0\)
\(\Leftrightarrow x^3\left(x+1\right)+4x^2\left(x+1\right)+6x\left(x+1\right)+9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+4x^2+6x+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^3+3x^2+x^2+6x+9\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x+3\right)+\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x^2+x+3\right)=0\)
mà \(x^2+x+3>0\forall x\)
nên (x+1)(x+3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Vậy: S={-1;-3}
a, \(\left(x+2\right)^3-x\left(x^2+6x-3\right)=0\Leftrightarrow x^3+4x^2+4x+2x^2+8x+8-x^3-6x^2+3x=0\)
\(\Leftrightarrow15x+8=0\Leftrightarrow x=-\frac{8}{15}\)
b, \(\left(x+4\right)^3-x\left(x+6\right)^2=7\Leftrightarrow12x+64=0\Leftrightarrow x=-\frac{19}{4}\)làm tắt:P
Tự làm nốt nhé
a) \(3x^2-5x-12=0\)
\(\Leftrightarrow3x^2+4x-9x-12=0\)
\(\Leftrightarrow x\left(3x+4\right)-3\left(3x+4\right)=0\)
\(\Leftrightarrow\left(3x+4\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{4}{3}\\x=3\end{cases}}\)
b) \(7x^2-9x+2=0\)
\(\Leftrightarrow7x^2-7x-2x+2=0\)
\(\Leftrightarrow7x\left(x-1\right)-2\left(x-1\right)=0\).
\(\Leftrightarrow\left(7x-2\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7x-2=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{7}\\x=1\end{cases}}\)
\(x^4-5x^3+x^2+15x-12=0\)
\(\Leftrightarrow x^4-x^3-4x^3+4x^2-3x^2+3x+12x-12=0\)
\(\Leftrightarrow\left(x^4-x^3\right)-\left(4x^3-4x^2\right)-\left(3x^2-3x\right)+\left(12x-12\right)=0\)
\(\Leftrightarrow x^3.\left(x-1\right)-4x^2\left(x-1\right)-3x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-4x^2-3x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^3-4x^2\right)-\left(3x-12\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-4\right)-3\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\left(x^2-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\)hoặc \(x^2-3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)hoặc \(\orbr{\begin{cases}x=-\sqrt{3}\\x=\sqrt{3}\end{cases}}\)
Vậy \(x\in\left\{1;4;-\sqrt{3};\sqrt{3}\right\}\)