Thực hiện phép tính:
2x(3x^2-4x+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$5x-[2x+1-(2x-3)-(4x+1)]=5x-(2x+1-2x+3-4x-1)$
$=5x-(-4x+3)=5x+4x-3=9x-3$
b.
$(-3x^2+2x-1)+(4x^2-2x+3)$
$=-3x^2+2x-1+4x^2-2x+3=x^2+2$
=3x(x^2-2)(3x^2+x-2)
=(3x^3-6x)(3x^2+x-2)
=9x^5+3x^4-6x^3-18x^3-6x^2+12x
=9x^5+3x^4-12x^3-6x^2+12x
2x(x^2-1)=2x^3-2x
`@` `\text {Ans}`
`\downarrow`
`a)`
\(2x(4x²+x-3)\)
`= 2x*4x^2 + 2x*x + 2x*(-3)`
`= 8x^3 + 2x^2 - 6x`
`b)`
\([(-9x)+4x]: (-3x)-3x²\)
`= (-9x) \div (-3x) + 4x \div (-3x) - 3x^2`
`= 3 - 4/3 - 3x^2`
`= 5/3 - 3x^2`
\(\left(3x^{n+1}-2x^n\right).4x^2=12x^{n+3}-8x^{n+2}\)
a) 3x.(x² - 2)
= 3x.x² + 3x.(-2)
= 3x³ - 6x
b) (6x³ + 2x² - 4x) : 2x
= 6x³ : 2x + 2x² : 2x - 4x : 2x
= 3x² + x - 2
c) 2x(x² - 1)
= 2x.x² - 2x.1
= 2x³ - 2x
a) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{9x^2-4}\)
\(=\dfrac{3x+2-3x+2-3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{-3x+10}{\left(3x-2\right)\left(3x+2\right)}\)
b) \(\dfrac{x+25}{2x^2-50}-\dfrac{x+5}{x^2-5x}-\dfrac{5-x}{2x^2+10x}\)
\(=\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}-\dfrac{x+5}{x\left(x-5\right)}+\dfrac{x-5}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+25x-2\left(x+5\right)^2+\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{x^2+25x-2x^2-20x-50+x^2-10x+25}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-5x-25}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-5\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{-5}{2x\left(x-5\right)}\)
c) Ta có: \(\dfrac{1-2x}{2x}-\dfrac{4x}{2x-1}-\dfrac{3}{2x-4x^2}\)
\(=\dfrac{-\left(2x-1\right)^2-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-\left(4x^2-4x+1\right)-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-4x^2+4x-1-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-12x^2+4x+2}{2x\left(2x-1\right)}\)
\(\dfrac{x^2-50}{3x^2-9x}\div\dfrac{2x^2+10x}{x^2-9}\)
\(\Leftrightarrow\dfrac{x^2-50}{3x\left(x-3\right)}\div\dfrac{2x^2+10x}{\left(x-3\right)\left(x+3\right)}\)
MTC: 3x(x-3)(x+3)
\(\dfrac{(x^2-50)\left(x+3\right)}{3x\left(x-3\right)\left(x+3\right)}\div\dfrac{3x(2x^2+10x)}{3x\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow\)(x2-50)(x+3):3x(2x2+10x)
\(\Rightarrow\)(x3+3x2-50x-150):6x3+30x2
a) Ta có: \(\dfrac{x^2-50}{3x^2-9x}:\dfrac{2x^2+10x}{x^2-9}\)
\(=\dfrac{x^2-50}{3x\left(x-3\right)}\cdot\dfrac{\left(x-3\right)\left(x+3\right)}{2x\left(x+5\right)}\)
\(=\dfrac{\left(x^2-50\right)\left(x+3\right)}{6x^2\left(x+5\right)}\)
b) Ta có: \(\dfrac{-3x^2}{2x+1}:\dfrac{-9}{4x^2-1}\)
\(=\dfrac{3x^2}{2x+1}\cdot\dfrac{\left(2x+1\right)\left(2x-1\right)}{9}\)
\(=\dfrac{x^2\left(2x-1\right)}{3}\)
a: \(=2x^3:\dfrac{-3}{2}x+4x:\dfrac{3}{2}x-5:\dfrac{3}{2}\)
=-4/3x^2+8/3-10/3
=-4/3x^2-2/3
d: \(\dfrac{3x^3-5x+2}{x-3}=\dfrac{3x^3-9x^2+9x^2-27x+22x-66+68}{x-3}\)
\(=3x^2+9x+22+\dfrac{68}{x-3}\)
=6x^3-8x^2+4x