K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2020

Sử dụng bất đẳng thức AM-GM, ta có 

\(\Sigma_{cyc}\sqrt{a+b^2}=\Sigma_{cyc}\frac{a+b^2}{\sqrt{a+b^2}}=\Sigma_{cyc}\frac{\left(a+b\right)\left(a+b^2\right)}{\left(a+b\right)\sqrt{a+b^2}}\ge\Sigma_{cyc}\frac{2\left(a+b\right)\left(a+b^2\right)}{\left(a+b\right)^2+a+b^2}\)

\(=\Sigma_{cyc}\frac{2\left(a+b\right)\left(a\left(a+b+c\right)+b^2\right)}{\left(a+b\right)^2+a\left(a+b+c\right)+b^2}=\Sigma_{cyc}\frac{2\left(a+b\right)\left(a^2+b^2+ab+ac\right)}{2a^2+2b^2+3ab+ac}\)

Như thế ta chỉ cần chứng minh

                     \(\Sigma_{cyc}\frac{\left(a+b\right)\left(a^2+b^2+ab+ac\right)}{2a^2+2b^2+3ab+ac}\ge a+b+c\)

\(\Leftrightarrow\Sigma_{cyc}a^5b^2+\Sigma_{cyc}a^4b^2c+2\Sigma_{cyc}a^5bc\ge2\Sigma_{cyc}a^3b^3c+2\Sigma_{cyc}a^3b^3c^2\)

\(\Leftrightarrow\Sigma_{cyc}\left(\frac{19}{6}a^5b^2+\frac{4}{19}b^5c^2+\frac{6}{19}c^5a^2-a^3b^2c^2\right)+abc\left(\Sigma_{cyc}a^3b-\Sigma_{cyc}a^2bc\right)+2abc\)\(\left(\Sigma_{cyc}a^4-\Sigma_{cyc}a^2b^2\right)\ge0\)

Bất đẳng thức cuối cùng hiển nhiên đúng nên ta có đpcm.Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)Hoặc \(a=1,b=c=0\) Và các hoán vị

13 tháng 5 2019

Áp dụng bđt Bunhiacopxki được \(\left(a+b\right)^2\le\left(1+1\right)\left(a^2+b^2\right)=2\left(a^2+b^2\right)\)

\(\Rightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Rightarrow\sqrt{a^2+b^2}\ge\frac{a+b}{\sqrt{2}}\)

Chứng minh tương tự \(\hept{\begin{cases}\sqrt{b^2+c^2}\ge\frac{b+c}{\sqrt{2}}\\\sqrt{c^2+a^2}\ge\frac{c+a}{\sqrt{2}}\end{cases}}\)

Cộng 3 bđt lại được

\(VT\ge\frac{2\left(a+b+c\right)}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Dấu "=" <=> a= b = c = 1/3

11 tháng 7 2020

hgggggg

đặt \(S=\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\)

\(=\frac{a^3}{4a^2b^2+a^2}+\frac{b^3}{4b^2c^2+b^2}+\frac{c^3}{4a^2c^2+c^2}\ge\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4a^2b^2+4b^2c^2+4c^2a^2+a^2+b^2+c^2}\)

xét hiệu:

1-4(a2b2+b2c2+c2a2)-a2-b2-c2

=2ab+2bc+2ca-4(a2b2+b2c2+c2a2)

=2ab(1-2ab)+2bc(1-2bc)+2ca(1-2ca)

ta có:

\(2ab\le\frac{\left(a+b\right)^2}{2}\le\frac{1}{2};2bc\le\frac{\left(b+c\right)^2}{2}\le\frac{1}{2};2ca\le\frac{\left(c+a\right)^2}{2}\le\frac{1}{2}\)

\(\Rightarrow2ab\left(1-2ab\right);2bc\left(1-2bc\right);2ca\left(1-2ca\right)\ge0\)

\(\Rightarrow1\ge4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2\)

\(\Rightarrow\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)

\(\Rightarrow\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)

=>đpcm

dấu"=" xảy ra khi 1 số=1;2 số còn lại =0