K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2023

`M=2(x^3 -y^3 )-3(x^2 +y^2)`

`M=2(x-y)(x^2 +xy+y^2 )-3x^2 -3y^2`

`M=2x^2 +2xy+2y^2 -3x^2 -3y^2`

`M=-x^2 +2xy-y^2`

`M=-(x^2 -2xy+y^2)`

`M=-(x-y)^2`

`M=-(1)^2`

`M=-1`

29 tháng 7 2023

\(M=2\left(x^3-y^3\right)-3\left(x^2-y^2\right)\)

\(M=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\left(x+y\right)\)

\(M=2\left[x^2+x\left(x-1\right)+\left(x-1\right)^2\right]-3\left(2x-1\right)\)

\(M=2\left(x^2+x^2-x+x^2-2x+1\right)-6x+3\)

\(M=6x^2-12x+5\)

 Đề bài yêu cầu tính giá trị nhưng mình cũng không rõ là giá trị gì nên mình làm đến đây thôi nhé.

 

 

28 tháng 8 2023

\(x^3-3x^2y+3xy^2-y^3\)

\(=x^3-3\cdot x^2\cdot y+3\cdot x\cdot y^2-y^3\)

\(=\left(x-y\right)^3\)

Thay x=3 và y=2 vào ta có:

\(\left(3-2\right)^3=1^3=1\)

\(a)\)

\(21\left(x+3\right)^3:\left(3x+9\right)^2\)

\(=[21\left(x+3\right)^3]:[3^2\left(x+3\right)^2]\)

\(=7\left(x+3\right):3\)

Thay vào ta được: \(7.\frac{\left(-6+3\right)}{3}=7.\left(-3\right):3=-7\)

\(b)\)

Thay vào ta được:

\(\left(2.2^2-5.2+3\right)^4:[\left(2.2-3\right)^3:\left(2-1\right)^2]\)

\(=\left(2.4-10+3\right)^4:[\left(4-3\right)^31^2]\)

\(=1^4:\left(1^3.1\right)\)

\(=1:1\)

\(=1\)

\(c)\)

Thay vào ta được:

\(36.10^4.7^3:\left(-6.10^3.7^2\right)\)

\(=-6.10.7\)

\(=-420\)

15 tháng 3 2022

a, \(A=\left(-\dfrac{2}{3}x^2y\right)\left(-\dfrac{3}{5}x^2y^3\right)=\dfrac{2}{5}x^4y^4\)

b,Thay x = -1 ; y = 2 ta được \(\dfrac{2^5}{5}=\dfrac{32}{5}\)

 c, \(B=\dfrac{2}{5}x^4y^4-x^4y^4-3=-\dfrac{3}{5}x^4y^3-3< 0\)

Vậy B luôn nhận gtr âm 

15 tháng 3 2022

\(-3x^4y^4-3\)dòng 2 dưới lên ban nhé 

25 tháng 12 2020

ko có biết

Bài 2: 

a: Ta có: \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)

\(=\left(x+y\right)^3+2\cdot\left(x+y\right)^2\)

\(=7^3+2\cdot7^2=441\)

29 tháng 3 2023

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
Do đó \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
Thay vào biểu thức \(P=\left(x-y\right)^{2022}+\left(y-z\right)^{2023}+\left(x-z-1\right)^{202}\),ta có:
\(P=0^{2022}+0^{2023}+\left(-1\right)^{202}\)
\(=0+0+1\)
\(=1\)

29 tháng 3 2023

giup mik nhiều quá hihi