cho các số x y thỏa mãn x + y = 3 tính giá trị biểu thức a = x mũ 3 + x mũ 2 y - 3 x mũ 2 + x y + y mũ 2 - 4y - x + 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`M=2(x^3 -y^3 )-3(x^2 +y^2)`
`M=2(x-y)(x^2 +xy+y^2 )-3x^2 -3y^2`
`M=2x^2 +2xy+2y^2 -3x^2 -3y^2`
`M=-x^2 +2xy-y^2`
`M=-(x^2 -2xy+y^2)`
`M=-(x-y)^2`
`M=-(1)^2`
`M=-1`
\(M=2\left(x^3-y^3\right)-3\left(x^2-y^2\right)\)
\(M=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\left(x+y\right)\)
\(M=2\left[x^2+x\left(x-1\right)+\left(x-1\right)^2\right]-3\left(2x-1\right)\)
\(M=2\left(x^2+x^2-x+x^2-2x+1\right)-6x+3\)
\(M=6x^2-12x+5\)
Đề bài yêu cầu tính giá trị nhưng mình cũng không rõ là giá trị gì nên mình làm đến đây thôi nhé.
\(x^3-3x^2y+3xy^2-y^3\)
\(=x^3-3\cdot x^2\cdot y+3\cdot x\cdot y^2-y^3\)
\(=\left(x-y\right)^3\)
Thay x=3 và y=2 vào ta có:
\(\left(3-2\right)^3=1^3=1\)
\(a)\)
\(21\left(x+3\right)^3:\left(3x+9\right)^2\)
\(=[21\left(x+3\right)^3]:[3^2\left(x+3\right)^2]\)
\(=7\left(x+3\right):3\)
Thay vào ta được: \(7.\frac{\left(-6+3\right)}{3}=7.\left(-3\right):3=-7\)
\(b)\)
Thay vào ta được:
\(\left(2.2^2-5.2+3\right)^4:[\left(2.2-3\right)^3:\left(2-1\right)^2]\)
\(=\left(2.4-10+3\right)^4:[\left(4-3\right)^31^2]\)
\(=1^4:\left(1^3.1\right)\)
\(=1:1\)
\(=1\)
\(c)\)
Thay vào ta được:
\(36.10^4.7^3:\left(-6.10^3.7^2\right)\)
\(=-6.10.7\)
\(=-420\)
a, \(A=\left(-\dfrac{2}{3}x^2y\right)\left(-\dfrac{3}{5}x^2y^3\right)=\dfrac{2}{5}x^4y^4\)
b,Thay x = -1 ; y = 2 ta được \(\dfrac{2^5}{5}=\dfrac{32}{5}\)
c, \(B=\dfrac{2}{5}x^4y^4-x^4y^4-3=-\dfrac{3}{5}x^4y^3-3< 0\)
Vậy B luôn nhận gtr âm
Bài 2:
a: Ta có: \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=\left(x+y\right)^3+2\cdot\left(x+y\right)^2\)
\(=7^3+2\cdot7^2=441\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
Do đó \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
Thay vào biểu thức \(P=\left(x-y\right)^{2022}+\left(y-z\right)^{2023}+\left(x-z-1\right)^{202}\),ta có:
\(P=0^{2022}+0^{2023}+\left(-1\right)^{202}\)
\(=0+0+1\)
\(=1\)