Chứng minh A=1+4^1+4^2+.....+4^98 chia hết cho 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1+4+42)+(43+44+45)+...........+(496+497+498)
A=1.21 + 43.21 + 496.21
Vì 21 chia hết cho 21 nên A chia hết cho 21
Thưn lắm mới giúp em đók kkk
A = 1 + 4 + 42 + 43 + ... + 498
= ( 1 + 4 + 42 ) + ( 43 + 44 + 45 ) + ... + ( 496 + 497 + 498 )
= 21 + 43( 1 + 4 + 42 ) + ... + 496( 1 + 4 + 42 )
= 21 + 43.21 + ... + 496.21
= 21( 1 + 43 + ... + 496 ) chia hết cho 21 ( đpcm )
A=[1/1+1/2+....+1/98]*2*4*...*98*3*33=A=[1/1+1/2+....+1/98]*2*4*....*98*99\(⋮\)99
\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times3\times4\times...\times98\)
\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times3\times4\times...\times33\times...\times98\)
\(A=\left(3\times33\right)\times\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times4\times...\times98\)
\(A=99\times\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\times2\times4\times...\times98\)
Vậy \(A⋮99\)(Vì A có thừa số 99)
Ta có\(M=\left[\left(1+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\right].2.3...98\)
\(=\left[\frac{99}{1.98}+\frac{99}{2.97}+...+\frac{99}{49.50}\right].2.3...98=99\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right).2.3...98\)
\(=99\left(\frac{k_1+k_2+...+k_{49}}{1.2.3...98}\right).2.3...98\left(k_1,k_2...k_{49}\varepsilonℕ^∗\right)=99\left(k_1+k_2+...+k_{49}\right)⋮99\Rightarrow M⋮99\left(đpcm\right)\)
2n+3 chia hết cho n- 2
=>(2n+3)- 2. (n- 2) chia hết cho n- 2
=>2n +3 - 2n +4 chia hết cho n- 2
=>7 chia hết cho n- 2
=> n- 2 thuộc Ư(7) ={......}
RỒI KẺ bẢNG Là XONG
Câu 2:
\(C=3^{10}+3^{11}+3^{12}+...+3^{17}.\)
\(C=\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+3^{15}+3^{16}+3^{17}\right).\)
\(C=3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right).\)
\(C=3^{10}\left(1+3+9+27\right)+3^{14}\left(1+3+9+27\right).\)
\(C=3^{10}.40+3^{14}.40.\)
\(C=\left(3^{10}+3^{14}\right).40⋮40\left(đpcm\right).\)
\(C=3^{10}+3^{11}+..+3^{17}\\ =\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+..+3^{17}\right)\\ =3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right)\\ =40\left(3^{10}+3^{14}\right)⋮40\)