K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2022

a) thay m= -2 vào pt , ta có :
→x+( -2-1)x+5.(-2)-6=0
↔x2-3x-16=0
Δ=(-3)2-4.1.(-16)
Δ=9+64
Δ=73 > 0
vì delta > 0 nên ta có 2 nghiệm phân biệt
x1=\(\dfrac{3+\sqrt{73}}{2.1}\)=\(\dfrac{3+\sqrt{73}}{2}\)
x2=\(\dfrac{3-\sqrt{73}}{2}\)
b)Hệ thức vi et :
x1+x2=\(\dfrac{-b}{a}=\dfrac{-\left(m-1\right)}{1}=-m+1\)(1)
x1.x2=\(\dfrac{c}{a}=\dfrac{5m-6}{1}=5m-6\)(2)
Ta có : 4x1+3x2=1(3)
Từ (1) và (3) , ta có hệ pt 
\(\left\{{}\begin{matrix}x1+x2=-m+1 \\4x1+3x2=1\end{matrix}\right. \)
\(\left\{{}\begin{matrix}3x_1+3x_2=-3m+3\\4x_1+3x_2=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1=3m-2\\x_1+x_2=-m+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1=3m-2\\x_2=-4m+3\end{matrix}\right.\)
Ta thay x1 x2 vào (2) , ta có :
➝(3m-2).(-4m+3)=5m-6
↔-12m2+12m=0
↔12m(-m+1)=0
-> 12m=0 -> m=0
-> -m+1=0 ->m=1 
Vậy m = 0 và m =1 thì sẽ tm hệ thức

26 tháng 8 2020

Bài làm:

Ta có: \(\sqrt{x}+2>3\)

\(\Leftrightarrow\sqrt{x}>1\)

\(\Rightarrow x>1\)

26 tháng 8 2020

\(\sqrt{x}>1\) 

\(\orbr{\begin{cases}1>0\left(llđ\right)\\x>1^2\end{cases}}\) 

\(x>1\)

26 tháng 2 2020

1) ĐK: \(x\ge-1\)

\(\sqrt{9x^2+9x+4}>9x+3-\sqrt{x+1}\)

<=> \(\sqrt{9x^2+9x+4}+\sqrt{x+1}>9x+3\)(1)

TH1: 9x + 3 \(\le\)0 <=> x\(\le-\frac{1}{3}\)

(1) luôn đúng 

Th2: x\(>-\frac{1}{3}\)

<=> \(\left(\frac{1}{2}x+1-\sqrt{x+1}\right)+\left(\frac{17}{2}x+2-\sqrt{9x^2+9x+4}\right)< 0\)

<=> \(\frac{\frac{1}{4}x^2}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{\frac{253}{4}x^2}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}< 0\)

<=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)< 0\)vô nghiệm 

 Vì với x \(>-\frac{1}{3}\)

ta có: \(\frac{1}{2}x+1+\sqrt{x+1}>0\)

\(\frac{17}{2}x+2+\sqrt{9x^2+9x+4}=\frac{17}{2}x+2+\sqrt{3\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}>\frac{17}{2}x+2+1>0\)

=> \(\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)>0\)với x \(>-\frac{1}{3}\) và \(x^2\ge0\)với mọi x

=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)\ge0\)với x\(>-\frac{1}{3}\)

Vậy \(x< -\frac{1}{3}\)

26 tháng 2 2020

Xin lỗi bạn kết luận bài 1 là:

\(-1\le x\le-\frac{1}{3}\)

Bài 2)  \(2+\sqrt{x+2}-x\sqrt{x+2}=x\left(\sqrt{x+2}-x\right)\)(2)

ĐK: \(x\ge-2\)

(2) <=> \(2+\sqrt{x+2}+x^2-2x\sqrt{x+2}=0\)

<=> \(8+4\sqrt{x+2}+4x^2-8x\sqrt{x+2}=0\)

<=> \(\left(2x-1\right)^2-4\left(2x-1\right)\sqrt{x+2}+4\left(x+2\right)-1=0\)

<=> \(\left(2x-1-2\sqrt{x+2}\right)^2-1=0\)

<=> \(\left(x-1-\sqrt{x+2}\right)\left(x-\sqrt{x+2}\right)=0\)

<=> \(\orbr{\begin{cases}x-1=\sqrt{x+2}\left(3\right)\\x=\sqrt{x+2}\left(4\right)\end{cases}}\)

(3) <=> \(\hept{\begin{cases}x\ge1\\x^2-3x-1=0\end{cases}}\Leftrightarrow x=\frac{3+\sqrt{13}}{2}\left(tm\right)\)

(4) <=> \(\hept{\begin{cases}x\ge0\\x^2-x-2=0\end{cases}\Leftrightarrow}x=2\left(tm\right)\)

Kết luận:...

\(\left|4x-1\right|=5-x\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-1=5-x\left(x\ge\dfrac{1}{4}\right)\\4x-1=x-5\left(x< \dfrac{1}{4}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(nhận\right)\\x=-\dfrac{4}{3}\left(nhận\right)\end{matrix}\right.\)

NV
4 tháng 2 2021

1.

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta=\left(m+1\right)^2-4m\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-3m^2+7m+1< 0\end{matrix}\right.\)

\(\Leftrightarrow m< \dfrac{7-\sqrt{61}}{6}\)

2.

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\3m^2+13m+4\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\-4\le m\le-\dfrac{1}{3}\end{matrix}\right.\)

Không tồn tại m thỏa mãn

a ơi giúp e với 

https://hoc24.vn/cau-hoi/tim-gtnn-cua-t2m4-2m2-12m-18.333959553188

9 tháng 1 2017

9 tháng 1 2017

28 tháng 5 2017

a, \(2mx-m^2\ge2x-2m+1\Leftrightarrow2x\left(m-1\right)\ge\left(m-1\right)^2\)

Nếu \(m-1\ge0\Leftrightarrow m\ge1\)thì

\(\Leftrightarrow2x\ge m-1\Leftrightarrow x\ge\frac{m-1}{2}\)

Nếu \(m< 1\)thì :

\(\Leftrightarrow2x\le m-1\Leftrightarrow x\le\frac{m-1}{2}\)

b,\(\Leftrightarrow2m-mx+m^2-2m+1>2x+5\Leftrightarrow m^2-4>\left(m+2\right)x\)

Nếu \(\left(m-2\right)\left(m+2\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\le-2\\m\ge2\end{cases}}\)thì

\(\Leftrightarrow x< m-2\)

Nếu \(m^2-4< 0\Leftrightarrow-2< m< 2\)thì

\(\Leftrightarrow x>m-2\)

c, \(\Leftrightarrow\left(m^2-m-1-3+m\right)x>5m\)

\(\Leftrightarrow\left(m^2-4\right)x>5m\)

Nếu \(m^2-4\ge0\Leftrightarrow\orbr{\begin{cases}m\le-2\\m\ge2\end{cases}}\)thì

\(x>\frac{5m}{m^2-4}\)

Nếu \(m^2-4< 0\Leftrightarrow-2< m< 2\)thì

\(x< \frac{5m}{m^2-4}\)