Tìm x.y biết (x/y)2 = 169 và x2+y2 = 100
Giải nhanh giúp em với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có:
;
cân bằng phương trình bằng cách nhân x vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân y vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân z vào cả hai vế ta có:
vì
Vì Có cùng số mũ và bằng nhau
Nên các cơ số cũng bằng nhau
Ta có: \(x^2=y\cdot z\)
nên \(z=\dfrac{x^2}{y}\)(1)
Ta có: \(y^2=z\cdot x\)
nên \(z=\dfrac{y^2}{x}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)
\(\Leftrightarrow x^3=y^3\)
hay x=y(3)
Ta có: \(x^2=y\cdot z\)
nên \(y=\dfrac{x^2}{z}\)(4)
Ta có: \(z^2=x\cdot y\)
nên \(y=\dfrac{z^2}{x}\)(5)
Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)
\(\Leftrightarrow x^3=z^3\)
hay x=z(6)
Từ (3) và (6) suy ra x=y=z(đpcm)
\(x+y=9\Leftrightarrow x^2+2xy+y^2=81\Leftrightarrow x^2+y^2=81-2xy\\ x-y=5\Leftrightarrow x^2-2xy+y^2=25\Leftrightarrow x^2+y^2=25+2xy\\ \Leftrightarrow81-2xy=25+2xy\\ \Leftrightarrow4xy=56\Leftrightarrow2xy=28\\ \Leftrightarrow B=x^2+y^2=\left(x+y\right)^2-2xy=9^2-28=53\)
Lời giải:
a. Đặt $y=kx$ với $k$ là hệ số tỉ lệ. $k$ cố định.
Có:
$\frac{1}{9}=y_2=kx_2=3k\Rightarrow k=\frac{1}{9}:3=\frac{1}{27}$
Vậy $y=\frac{1}{27}x$
$y_1=\frac{1}{27}x_1$
Thay $y_1=\frac{-3}{5}$ thì: $\frac{-3}{5}=\frac{1}{27}x_1$
$\Rightarrow x_1=\frac{-3}{5}: \frac{1}{27}=-16,2$
b. Đặt $y=kx$
$y_1=kx_1$
$\Rightarrow -2=k.5\Rightarrow k=\frac{-2}{5}$
Vậy $y=\frac{-2}{5}x$.
$\Rightarrow y_2=\frac{-2}{5}x_2$
Thay vào điều kiện $y_2-x_2=-7$ thì:
$\frac{-2}{5}x_2-x_2=-7$
$\Leftrightarrow \farc{-7}{5}x_2=-7\Leftrightarrow x_2=5$
$y_2=\frac{-2}{5}x_2=\frac{-2}{5}.5=-2$
Bài 1 .
3 - 5 + 7 - 9 + ... - 317 + 319 - 321
= 3 + ( -5 ) + 7 + ( -9 ) + ... + ( -317 ) + 319 + ( -321 )
= -2 . 160
= -320
Bài 2 :
a) 5 . | x - 4 | = 25
| x - 4 | = 5
TH1 : x - 4 = 5
x = 9
TH2 : x - 4 = -5
x = -1
Vậy x = 9 hoặc x = -1
a: Vì x,y là hai đại lượng tỉ lệ thuận nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow x_1=\dfrac{y_1}{y_2}\cdot x_2=\dfrac{-3}{5}:\dfrac{1}{9}\cdot3=\dfrac{-3}{5}\cdot27=-\dfrac{81}{5}\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\) nên \(\dfrac{x_2}{5}=\dfrac{y_2}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{x_2}{5}=\dfrac{y_2}{-2}=\dfrac{y_2-x_2}{-2-5}=\dfrac{-7}{-7}=1\)
Do đó: \(x_2=5;y_2=-2\)
\(=x^2y-x^2z+y^2\left(z-x\right)+xz^2-yz^2\\ =\left(x^2y-yz^2\right)-\left(x^2z-xz^2\right)-y^2\left(x-z\right)\\ =y\left(x-z\right)\left(x+z\right)-xz\left(x-z\right)-y^2\left(x-z\right)\\ =\left(x-z\right)\left(xy+yz-xz-y^2\right)\\ =\left(x-z\right)\left[x\left(y-z\right)+y\left(z-y\right)\right]\\ =\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
1)
Ta có: x+y=2
nên \(\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy=2\)
hay xy=1
Ta có: \(x^3+y^3\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=2^3-3\cdot1\cdot2\)
=2
2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)
\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)