cho a,b,c là số thực # 0. Tìm x,y,z là số thực # 0 thỏa mãn xy/ay+bx=yz/bz+cy=zx/cx+az=x^2+y^2+z^2/a^2+b^2+c^2
Giải chi tiết nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước tiên ta đi chứng minh BĐT phụ là:
Với a,b>0�,�>0 thì a2+b4≥ab(a2+b2)�2+�4≥��(�2+�2)
Cách CM:
BĐT trên tương đương với: (a−b)2(a2+ab+b2)≥0(�−�)2(�2+��+�2)≥0 (luôn đúng)
Quay trở về bài toán chính: Áp dụng BĐT phụ trên :
⇒ca4+b4+c≤cab(a2+b2)+c2ab=cab(a2+b2+c2)=c2a2+b2+c2⇒��4+�4+�≤���(�2+�2)+�2��=���(�2+�2+�2)=�2�2+�2+�2
Thực hiện tương tự với các phân thức còn lại và cộng theo vế:
⇒T≤a2+b2+c2a2+b2+c2=1⇒�≤�2+�2+�2�2+�2+�2=1 (đpcm)
Dấu bằng xảy ra khi a=b=c=1
a + b, b + c, c + a đều là các số hữu tỉ
=> 2(a + b + c) là số hữu tỉ
=> a + b + c là số hữu tỉ (do khi 1 số hữu tỉ chia cho 2 sẽ nhận đc 1 số hữu tỉ)
=> a + b + c - (a + b) = c là số hữu tỉ; a + b + c - (b + c) = a là số hữu tỉ; a + b + c - (c + a) = b là số hữu tỉ
=> a, b, c đều là số hữu tỉ (đpcm)
a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=> a=b=c
a-b+b-x-a+c/x+y-z=0/x+y-z=0
suy ra a-b=0 suy ra a=b
b-c=0 suy ra b=c