K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

Chọn D.

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Câu 1: 

Đỉnh của đths \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-b}{4},\frac{8c-b^2}{8})=(-1;0)\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{-b}{4}=-1\\ \frac{8c-b^2}{8}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=4\\ 8c=b^2=16\end{matrix}\right.\Leftrightarrow b=4; c=2\)

 

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Câu 2:
ĐTHS đi qua 3 điểm $A, B,C$ nên:
\(\left\{\begin{matrix} -1=a.0^2+b.0+c\\ -1=a.1^2+b.1+c\\ 1=a(-1)^2+b(-1)+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=-1\\ a+b+c=-1\\ a-b+c=1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} c=-1\\ a=1\\ b=-1\end{matrix}\right.\)

24 tháng 3 2019

Đáp án D

NV
2 tháng 11 2020

\(a\ne0\)

\(\left\{{}\begin{matrix}a+b+c=4\\-\frac{b}{2a}=-1\\4ac-b^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=4\\b=2a\\4ac-b^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=2a\\3a+c=4\\4ac-4a^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=c=1\\b=2\end{matrix}\right.\)

26 tháng 7 2019

Đáp án B

25 tháng 12 2021

Đề sai rồi bạn

25 tháng 12 2021

Trục đối xứng là 2
=> -b/2a = 2
=> a = -b/4 = - (-4)/4 = 1
P đi qua A(1;2)
=> 2 = 1.1^2 - 4.1 + c
=> c + 1 - 4 = 2
=> c = 5
=> y = x^2 - 4x + 5

AH
Akai Haruma
Giáo viên
5 tháng 1 2022

Lời giải:
Parabol đi qua $A(2;19)$ nên $y_A=3x_A^2+bx_A+c$ hay $19=12+2b+c$

$\Rightarrow 2b+c=7(1)$

$x=\frac{-2}{3}$ là trục đối xứng 

$\Leftrightarrow \frac{-b}{2.3}=\frac{-2}{3}$

$\Rightarrow b=4(2)$

Từ $(1); (2)\Rightarrow c=-1$

Vậy parabol có pt $y=3x^2+4x-1$

Theo đề, ta có:

\(\left\{{}\begin{matrix}\dfrac{-b}{6}=\dfrac{-2}{3}\\12+2b+c=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\c=-1\end{matrix}\right.\)

6 tháng 10 2016

Giúp với ạ gắp lắm :(