Câu 2: Cho tam giác ABC vuông tại A. Vẽ hình và thiết lập các hệ thức tỉ số lượng giác của góc B. Từ đó suy ra hệ thức tính tỉ số lượng giác của góc C.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sin B = \(\frac{AC}{BC}\); cos B = \(\frac{AB}{BC}\) ; tgB = \(\frac{AC}{AB}\); cot gB = \(\frac{AB}{BC}\)
Do góc B và C là hai góc phụ nhau nên :
sin C = cos B = \(\frac{AB}{BC};cosB=\frac{AB}{BC};cosC=sinB=\frac{AC}{BC}\)
\(tgC=cotgB=\frac{AB}{BC};cotgC=tgB=\frac{AC}{AB}\)
Chúc bạn học tốt !!!
hình đơn giản bạn tự vẽ:)
Áp dụng định lý Pytagoras ta có : BC2 = AB2 + AC2 = 32 + 42 = 25 => BC = 5cm
Ta có : \(\sin B=\frac{AC}{BC}=\frac{4}{5};\cos B=\frac{AB}{BC}=\frac{3}{5};\tan B=\frac{AC}{AB}=\frac{4}{3};\cot B=\frac{AB}{AC}=\frac{3}{4}\)
=> \(\sin C=\cos B=\frac{3}{5};\cos C=\sin B=\frac{4}{5};\tan C=\cot B=\frac{3}{4};\cot C=\tan B=\frac{4}{3}\)
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
B C 2 = A B 2 + A C 2 = 6 2 + 8 2 = 100
Suy ra: BC = 10 (cm)
Ta có: AC = 0,9m = 9dm; BC = 1,2m = 12dm
Theo định lí Pitago, ta có:
Vì ∠A và ∠B là hai góc phụ nhau nên suy ra:
(Ghi chú: Các bạn nên đổi đơn vị như trên để việc tính toán trở nên dễ dàng hơn.)
Áp dụng định lý Pitago:
\(AB=\sqrt{AC^2+BC^2}=1,5\left(cm\right)\)
\(sinB=\dfrac{AC}{AB}=0,6\) \(\Rightarrow cosA=sinB=0,6\)
\(cosB=\dfrac{BC}{AB}=0,8\) \(\Rightarrow sinA=cosB=0,8\)
\(tanB=\dfrac{AC}{BC}=\dfrac{3}{4}\) \(\Rightarrow cotA=tanB=\dfrac{3}{4}\)
\(cotB=\dfrac{BC}{AB}=\dfrac{4}{3}\) \(\Rightarrow tanA=cotB=\dfrac{4}{3}\)
\(BC^2=AB^2+AC^2=36+64=100=10^2\)
\(\Rightarrow BC=10\left(cm\right)\)
\(SinB=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\Rightarrow SinC=Sin\left(90-B\right)=CosB=\dfrac{3}{5}\)
\(CosB=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\Rightarrow CosC=Cos\left(90-B\right)=SinB=\dfrac{4}{5}\)
\(tanB=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow tanC=tan\left(90-B\right)=CotB=\dfrac{3}{4}\)
\(CotB=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\Rightarrow cotC=cot\left(90-B\right)=tanB=\dfrac{4}{3}\)
Xét ΔABC vuông tại A có
\(sinB=sin56\simeq0,83\)
\(cosB=cos56\simeq0,56\)
\(tanB=tan56\simeq1,48\)
\(cotB=cot56\simeq0,67\)
Xét ΔABC vuông tại A có
\(cosC=sinB\simeq0,83\)
\(sinC=cosB\simeq-0,56\)
\(cotC=tanB=tan56\simeq1,48\)
\(tanC=cotB\simeq0,67\)
Đổi AB=60mm=6cm
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có
\(\left\{{}\begin{matrix}\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\\\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\\\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\\\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\\\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\\\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\\\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\end{matrix}\right.\)