Tìm x:
x^2(2x+7)=16(2x+7)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6x\left(1-3x\right)+9x\left(2x-7\right)+171=0\)
\(\Leftrightarrow6x-18x^2+18x^2-63x+171=0\)
\(\Leftrightarrow-57x=-171\)
\(\Leftrightarrow x=3\)
\(\frac{x+1}{2015}+\frac{x+2}{2014}=\frac{x+3}{2013}+\frac{x+4}{2012}\)
\(\Leftrightarrow\left(\frac{x+1}{2015}+1\right)+\left(\frac{x+2}{2014}+1\right)-\left(\frac{x+3}{2013}+1\right)-\left(\frac{x+4}{2012}+1\right)=0\)
\(\Leftrightarrow\)\(\frac{x+2016}{2015}+\frac{x+2016}{2014}-\frac{x+2016}{2013}+\frac{x+2016}{2012}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)
\(\Leftrightarrow x+2016=0\) ( vì \(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\ne0\) )
\(\Leftrightarrow x=-2016\)
x^2 -2x = 24
=> x^2 - 2x - 24=0
=>x^2 -8x+6x - 24 = 0
=> ( x^2- 8x)+( 6x-24) = 0
=> x(x-8) + 6(x-8) = 0
=> (x+6)(x-8)=0
=>\(\orbr{\begin{cases}x=-6\\x=8\end{cases}}\)
a) \(2x\left(3x+1\right)+3x\left(4-2x\right)=7\)
\(\Rightarrow6x^2+2x+12x-6x^2=7\)
\(\Rightarrow14x=7\Rightarrow x=\frac{1}{2}\)
b) \(4\left(18-5x\right)-12\left(3x-7\right)=15\left(2x-16\right)-6\left(x+14\right)\)
\(72-20x-36x+84=30x-240-6x-84\)
\(\Rightarrow-20x-36x-30x+6x=-240-84-72-84\)
\(-80x=-480\)
x = 6
c) \(\left(3x+2\right).\left(2x+9\right)-\left(x+2\right).\left(6x+1\right)=\left(x+1\right)-\left(x-6\right)\)
\(\Rightarrow6x^2+4x+27x+18-6x^2-12x-x-2=x+1-x+6\) ( chỗ này bn tự phân tích ik nha, mk chỉ đưa ra kp sau khi phân tích thôi, ko thì viết ra dài lắm)
\(\Rightarrow18x+16=7\)
18x = -9
x = -2
18x =
a. => \(2^{6+x}=2^{10}\)
=> 6+x=10
=> x=10-6
Vậy x=4.
b. => \(7^{3x-1}:7^2=7^6\)
=> 73x-1-2=76
=> 73x-3=76
=> 3x-3=6
=> 3x=6+3
=> 3x=9
Vậy x=3.
c. =>\(7^{5x-1}-25=24\)
=>75x-1=24+25
=>75x-1=49
=>75x-1=72
=>5x-1=2
=>5x=3
Vậy x=\(\frac{3}{5}\).
d. => \(10^{x-3}=10^0\)
=>x-3=0
Vậy x=3.
e. => 2x=10
=> x=10:2
Vậy x=5.
Đề:........
<=> x2. (2x + 7) - 16. (2x + 7) = 0
<=> (2x + 7). (x2 - 16) = 0
<=> (2x+ 7). (x - 4). (x + 4) = 0
=> \(\hept{\begin{cases}2x+7=0\\x-4=0\\x+4=0\end{cases}}\Rightarrow\hept{\begin{cases}2x=-7\\x=4\\x=-4\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{-7}{2}\\x=4\\x=-4\end{cases}}\)
Vậy...........
\(x^2\left(2x+7\right)=16\left(2x+7\right)\)
\(x^2\left(2x+7\right)-16\left(2x+7\right)=0\)
\(\left(2x+7\right)\left(x^2-16\right)=0\)
\(\left(2x+7\right)\left(x+4\right)\left(x-4\right)=0\)
\(\hept{\begin{cases}x=-\frac{7}{2}\\x=-4\\x=4\end{cases}}\)