K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 10 2020

Bạn chỉ cần để ý điều này thôi: \(\left(x-\frac{1}{x}\right)^2=x^2-2.x.\frac{1}{x}+\frac{1}{x^2}=x^2-2+\frac{1}{x^2}\)

Do đó giả thiết viết lại thành:

\(\left(a^2-2+\frac{1}{a^2}\right)+\left(b^2-2+\frac{1}{b^2}\right)+\left(c^2-2+\frac{1}{c^2}\right)=0\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(b-\frac{1}{b}\right)^2+\left(c-\frac{1}{c}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-\frac{1}{a}=0\\b-\frac{1}{b}=0\\c-\frac{1}{c}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{a}\\b=\frac{1}{b}\\c=\frac{1}{c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2=1\\b^2=1\\c^2=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a^2\right)^{1010}=1^{1010}\\\left(b^2\right)^{1010}=1^{1010}\\\left(c^2\right)^{1010}=1^{1010}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^{2020}=1\\b^{2020}=1\\c^{2010}=1\end{matrix}\right.\) \(\Leftrightarrow a^{2020}+b^{2020}+c^{2020}=3\)

2 tháng 3 2022

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2016}\)

\(\Rightarrow\dfrac{bc+ac+bc}{abc}=\dfrac{1}{2016}\)

\(\Rightarrow\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)

\(\Rightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc=abc\)

\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a=-b\) hay \(b=-c\) hay \(c=-a\)
-Vậy trong ba số a,b,c tồn tại 2 số đối nhau.

NV
15 tháng 2 2022

\(4=2a^2+\dfrac{1}{a^2}+\dfrac{b^2}{4}=\left(a^2+\dfrac{1}{a^2}-2\right)+\left(a^2+\dfrac{b^2}{4}+ab\right)-ab+2\)

\(\Rightarrow4=\left(a-\dfrac{1}{a}\right)^2+\left(a+\dfrac{b}{2}\right)^2-ab+2\)

\(\Rightarrow ab=\left(a-\dfrac{1}{a}\right)^2+\left(a+\dfrac{b}{2}\right)^2-2\ge-2\)

\(M_{min}=-2\) khi \(\left\{{}\begin{matrix}a-\dfrac{1}{a}=0\\a+\dfrac{b}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;-2\right);\left(-1;2\right)\)

11 tháng 11 2021

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow ab+bc+ca=0\)

\(a+b+c=\sqrt{2019}\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=2019\)

\(\Rightarrow a^2+b^2+c^2=2019\) ( vì \(ab+bc+ca=0\))

11 tháng 11 2021

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\\ A=a^2+b^2+c^2\\ \Leftrightarrow A=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\\ \Leftrightarrow A=\left(\sqrt{2019}\right)^2-2\cdot0=2019\)

15 tháng 2 2022

-Đề thiếu?

15 tháng 2 2022

e sửa r ạ

 

a: pi/2<a<pi

=>sin a>0

\(sina=\sqrt{1-\left(-\dfrac{1}{\sqrt{3}}\right)^2}=\dfrac{\sqrt{2}}{\sqrt{3}}\)

\(sin\left(a+\dfrac{pi}{6}\right)=sina\cdot cos\left(\dfrac{pi}{6}\right)+sin\left(\dfrac{pi}{6}\right)\cdot cosa\)

\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{1}{2}\cdot-\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{6}-2}{2\sqrt{3}}\)

b: \(cos\left(a+\dfrac{pi}{6}\right)=cosa\cdot cos\left(\dfrac{pi}{6}\right)-sina\cdot sin\left(\dfrac{pi}{6}\right)\)

\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)

c: \(sin\left(a-\dfrac{pi}{3}\right)\)

\(=sina\cdot cos\left(\dfrac{pi}{3}\right)-cosa\cdot sin\left(\dfrac{pi}{3}\right)\)

\(=\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{2}+\sqrt{3}}{2\sqrt{3}}\)

d: \(cos\left(a-\dfrac{pi}{6}\right)\)

\(=cosa\cdot cos\left(\dfrac{pi}{6}\right)+sina\cdot sin\left(\dfrac{pi}{6}\right)\)

\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}+\sqrt{2}}{2\sqrt{3}}\)

24 tháng 12 2021

Sửa đề \("="\rightarrow"+"\)

Áp dụng BĐT cauchy, ta có:\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2=2\left(ab+b+1\right)\)

\(\Leftrightarrow\sum\dfrac{1}{a^2+2b^2+3}\le\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ca+a+1}\right)\\ \Leftrightarrow\sum\dfrac{1}{a^2+2b^2+3}\le\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{ab}{ab^2c+abc+ab}+\dfrac{b}{abc+ab+b}\right)=\dfrac{1}{2}\cdot1=\dfrac{1}{2}\)

Dấu \("="\Leftrightarrow a=b=c=1\)

 

24 tháng 12 2021

Ghi Cô Si cho dễ hiểu chí

 

25 tháng 5 2021

Với mọi số thực ta luôn có:

`(a-b)^2>=0`

`<=>a^2-2ab+b^2>=0`

`<=>a^2+b^2>=2ab`

`<=>2(a^2+b^2)>=(a+b)^2=1`

`<=>a^2+b^2>=1/2(đpcm)`

Dấu "=' `<=>a=b=1/2`

25 tháng 5 2021

ta có:

(a²+b²)(1²+1²)≥(a.1+b.1)²

⇔ 2(a²+b²) ≥ (a+b)²

⇔ 2(a²+b²)≥ 1 (vì a+b=1)

⇔ a² +b² ≥ 1/2 (đpcm)

dấu "=) xảy ra khi a = b = 1/2

20 tháng 11 2017

+) \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

\(\Rightarrow\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)

\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)

\(\Rightarrow ayz+bxz+cxy=0\)

+) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)