Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
2a)\(a^2+\dfrac{b^2}{4}\ge ab\)
\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)
\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)
\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)
b)Đã cm
c)\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)
Dấu bằng xảy ra khi a=b=1
Ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2+a^2+b^2\ge a^2+b^2+2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge1\)
\(\Leftrightarrow a^2+b^2\ge\dfrac{1}{2}\)
=> ĐPCM
Ta có: a + b = 1
<=> \(\left(a+b\right)^2=1\)
<=> \(a^2+2ab+b^2=1\) (1)
Lại có: \(\left(a-b\right)^2\ge0\)
<=> \(a^2-2ab+b^2\ge0\) (2)
Cộng (1) và (2) vế theo vế ta được:
\(2a^2+2b^2\ge1\)
<=>\(2\left(a^2+b^2\right)\ge1\)
\(\Leftrightarrow a^2+b^2\ge\dfrac{1}{2}\) (đpcm)
Áp dụng BĐT cô si cho 2 số ta có
\(a^2+\dfrac{1}{4}\ge2\sqrt{a^2.\dfrac{1}{4}}=a\)
cmtt ta có
\(b^2+\dfrac{1}{4}\ge b\)
cộng từng vế của BĐt trên ta có
\(a^2+b^2+\dfrac{1}{2}\ge a+b\)
⇔ \(a^2+b^2+\dfrac{1}{2}\ge1\)
⇔ \(a^2+b^2\ge\dfrac{1}{2}\left(đpcm\right)\)
\(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2\)
\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
Vì a+b=1 nên
\(2\left(a^2+b^2\right)\ge1\)
\(\Rightarrow a^2+b^2\ge\dfrac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\dfrac{1}{2}\)
a)
\(a^2+b^2+c^2+d^2+m^2-a(b+c+d+m)\)
\(=\frac{4a^2+4b^2+4c^2+4d^2+4m^2-4a(b+c+d+m)}{4}\)
\(=\frac{(a^2+4b^2-4ab)+(a^2+4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4m^2-4am)}{4}\)
\(=\frac{(a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2m)^2}{4}\geq 0\) (đpcm)
Dấu "=" xảy ra khi \(a=2b=2c=2d=2m\)
b)
Xét hiệu
\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{x+y}{xy}-\frac{4}{x+y}=\frac{(x+y)^2-4xy}{xy(x+y)}\)
\(=\frac{x^2+y^2-2xy}{xy(x+y)}=\frac{(x-y)^2}{xy(x+y)}\geq 0, \forall x,y>0\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\) (đpcm)
Dấu "=" xảy ra khi $x=y$
c)
Xét hiệu:
\((a^2+c^2)(b^2+d^2)-(ab+cd)^2\)
\(=(a^2b^2+a^2d^2+c^2b^2+c^2d^2)-(a^2b^2+2abcd+c^2d^2)\)
\(=a^2d^2-2abcd+b^2c^2=(ad-bc)^2\geq 0\)
\(\Rightarrow (a^2+c^2)(b^2+d^2)\geq (ab+cd)^2\) (đpcm)
Dấu "=" xảy ra khi \(ad=bc\)
d)
Xét hiệu:
\(a^2+b^2-(a+b-\frac{1}{2})=a^2+b^2-a-b+\frac{1}{2}\)
\(=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})\)
\(=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2\geq 0\)
\(\Rightarrow a^2+b^2\geq a+b-\frac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
Giải:
Áp dụng BĐT Bunhiacopxki ta có:
\(\left(a^2+b^2+c^2\right)\left(1+1+1\right)\) \(\ge\left(a.1+b.1+c.1\right)^2=1\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge1\)
\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{1}{3}\) (Đpcm)
Dấu "=" xảy ra \(\Leftrightarrow\dfrac{a}{1}=\dfrac{b}{1}=\dfrac{c}{1}\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :
\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^3}{1+1+1}=\dfrac{1}{3}\) (đpcm)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Bài 1:
\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(a=b=1\)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=1^2=1\)
\(\Rightarrow x^2+y^2+z^2\ge\dfrac{1}{3}\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Bài 3:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(4+1\right)\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)
\(\Rightarrow5\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)
\(\Rightarrow5\left(4x^2+y^2\right)\ge\left(4x+y\right)^2=1^2=1\)
\(\Rightarrow4x^2+y^2\ge\dfrac{1}{5}\)
Đẳng thức xảy ra khi \(x=y=\dfrac{1}{5}\)
bài 1 mình thấy sao sao ý !!
đề bài là với mọi a,b,c tùy ý và chứng minh chứ bạn làm là khai thác ý cần chứng minh để chỉ ra điều kiện mà
a,b <0 hiển nhiên a^2 +b^2 >= a+b {VT>0 VP <0}
xét a,b >0
a^2 +b^2 >=2ab>=2
a^2 +b^2 -2a-2b +a^2 +b^2 >= a^2 +b^2 -2a-2b +2 =a^2 +b^2 -2a-2b +1+1 =(a-1)^2 +(b-1)^2 >=0 hiển nhiên => dpcm
đẳng thwucs kh a=b=1
AM - GM : \(a+b\ge2\sqrt{ab}=2\)
\(\Rightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{\left(a+b\right)\left(a+b\right)}{2}\ge\frac{2\left(a+b\right)}{2}=a+b\)
1) 2( a2 + b2 ) ≥ ( a + b)2
<=> 2a2 + 2b2 - a2 - 2ab - b2 ≥ 0
<=> a2 - 2ab + b2 ≥ 0
<=> ( a - b )2 ≥ 0 ( luôn đúng )
=> đpcm
2) Áp dụng BĐT Cô-si cho 2 số dương x , y , ta có :
a + b ≥ \(2\sqrt{ab}\)
=> \(\dfrac{1}{x}+\dfrac{1}{y}\) ≥ 2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)
=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\) ) ≥ \(2\sqrt{xy}\)2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)
=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\)) ≥ 4
=> \(\dfrac{1}{x}+\dfrac{1}{y}\) ≥ \(\dfrac{4}{x+y}\)
Với mọi số thực ta luôn có:
`(a-b)^2>=0`
`<=>a^2-2ab+b^2>=0`
`<=>a^2+b^2>=2ab`
`<=>2(a^2+b^2)>=(a+b)^2=1`
`<=>a^2+b^2>=1/2(đpcm)`
Dấu "=' `<=>a=b=1/2`
ta có:
(a²+b²)(1²+1²)≥(a.1+b.1)²
⇔ 2(a²+b²) ≥ (a+b)²
⇔ 2(a²+b²)≥ 1 (vì a+b=1)
⇔ a² +b² ≥ 1/2 (đpcm)
dấu "=) xảy ra khi a = b = 1/2