K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

số bị chia là 

    7*13=91

vì 91 chia hết 13 thì bằng 7

  nên số dư là 0 

    đáp số: a=0

26 tháng 10 2021

hhhjjkkklllppuuuggg   bbbgggddsssaaqqwwertyuioplkjhgfdsazxcvbnmmmmmmmmmmmmmmm,.l

20 tháng 12 2015

toán lớp 1 khó quá , mình ko biet làm

17 tháng 4 2021

Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A=29p+5(p thuộc N)
Tương tự: A=31q+28(q thuộc N)
Nên: 29p+5=31q+28=>29(p-q)=2q+23
Ta thấy: 2q+23 là số lẻ=>29(p-q) cũng là số lẻ=>p-q=1
Theo giả thiết A nhỏ nhất=>q nhỏ nhất(A=31q+28)
=>2q=29(p-q)-23 nhỏ nhất
=>p-q nhỏ nhất
Do đó p-q=1=>2q=29-23=6
=>q=3
Vậy số cần tìm là A=31q+28=31.3+28=121

7 tháng 12 2020

ê thằng cu kia

7 tháng 12 2020

Tìm số tự nhiên nhỏ nhất chia cho 8, 10 , 15, 20 có só dư lần lượt là 5, 7, 12, 17 và chia hết cho 41

Gọi a là số tự nhiên nhỏ nhất cần tìm :

Theo bài ra, ta có:

\(⋮8\)(dư 5 )

\(a⋮10\left(dư7\right)\)

\(a⋮15\left(dư12\right)\)

\(a⋮20\left(dư17\right)\)

Ta tìm BCNN ( \(8;10;15;20\))

8=23

10=2.5

15=3.5

20=22.5

Nên BCNN là : 120

Lại có: \(a⋮41\)nên \(a=41.k\left(k\in N\right)\)

\(\Rightarrow n+3=41k+3\)

\(\Rightarrow41k+3⋮120\)

\(\Rightarrow41k⋮120-3\)

\(\Rightarrow41k⋮117\)

\(\Rightarrow a⋮117\)

Theo bài thì ta có:

\(a⋮41vs117\)

\(\Rightarrow a\in BC\left(41vs117\right)\)

Vì a là \(ℕ\)nhỏ nhất thuộc BC của 41 và 117

\(\Rightarrow a=BCNN\left(41;117\right)\)

Mà 41 và 117 là hai số nguyên tố trùng nhau nên BCNN ( 41;117 ) = 4797

Vậy số cần tìm là 4797

3 tháng 10 2015

 Gọi số cần tìm là a 
Do a chia 5 dư 1 nên a-1 chia hết cho 5 
Mà 10 chia hết cho 5 nên a- 1 + 10 chia hết cho 5 
=> a+9 chia hết cho 5 (1) 
Do a chia 7 dư 5 nên a-5 chia hết cho 7 
Mà 14 chia hết cho 7 nên a- 5 + 14 chia hết cho 7 
=> a+9 chia hết cho 7 (2) 
Từ (1) và (2) suy ra a+9 là bội của 5 và 7 
mà a nhỏ nhất nên a+9 = BCNN (5; 7) = 35 
=> a = 26 
Vậy số phải tìm là 26 

9 tháng 4 2017

 số tự nhiên A chia cho 29 dư 5 nghĩa là A = 29p + 5 ( \(p\in N\) ) tương tự A = 31q + 28 ( \(q\in N\) ) nên 
31q + 28 = 29p + 5 ở đây p > q vì nếu p \(\le\) q ta được 31q - 29 p + 23 = 0 là vô lý vì 31q - 29 p + 23 > 0 với giả thiết p ≤ q ( 29p \(\le\) 29q \(\le\) 31q ) 
vậy p > q ta có 29 ( p - q ) = 23 + 2q vì A là nhỏ nhất nên với p, q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được q = ( 29 - 23 ) : 2 = 3 vậy p = 4 thay vào ta được A = 29. 4 + 5 = 121 
Thử lại 121 = 31 . 3 + 28 ( Đ ) 

9 tháng 4 2017

Gọi số phải tìm là x.Đặt A = x - 5 
x chia 29 dư 5 \(\Rightarrow\) A chia hết cho 29 
x chia 31 dư 28 \(\Rightarrow\) A chia 31 dư 23 \(\Rightarrow\) A=31k+23 (k nguyên) 
Cho k=0,1,2,3,...ta thấy khi k = 3 thì A = 116 chia hết cho 29 
Vậy x = A + 5 = 116 + 5 = 121.

23 tháng 11 2015

Số a chia 3;5;7 dư 2;4;6

Nên a+  1 chia hết cho 3;5;7

3 = 3 ; 5 = 5 ; 7 = 7

=> BCNN(3;5;7) = 3.5.7 = 105

a = 105 - 1 = 104