Tìm m để pt có nghiệm
1. (m+1)sinx-3cosx=m
Tìm m để pt vô nghiệm
3sin2x+4msin2x-4=0
3. Giải pt lượng giác
(2cosx-sinx)(1+sinx)=cos2x
Cosxcosx/2cos3x/2-sinxsinx/2sin3x/2=1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a, Phương trình có nghiệm khi:
\(\left(m+2\right)^2+m^2\ge4\)
\(\Leftrightarrow m^2+4m+4+m^2\ge4\)
\(\Leftrightarrow2m^2+4m\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\)
b, Phương trình có nghiệm khi:
\(m^2+\left(m-1\right)^2\ge\left(2m+1\right)^2\)
\(\Leftrightarrow2m^2+6m\le0\)
\(\Leftrightarrow-3\le m\le0\)
2.
a, Phương trình vô nghiệm khi:
\(\left(2m-1\right)^2+\left(m-1\right)^2< \left(m-3\right)^2\)
\(\Leftrightarrow4m^2-4m+1+m^2-2m+1< m^2-6m+9\)
\(\Leftrightarrow4m^2-7< 0\)
\(\Leftrightarrow-\dfrac{\sqrt{7}}{2}< m< \dfrac{\sqrt{7}}{2}\)
b, \(2sinx+cosx=m\left(sinx-2cosx+3\right)\)
\(\Leftrightarrow\left(m-2\right)sinx-\left(2m+1\right)cosx=-3m\)
Phương trình vô nghiệm khi:
\(\left(m-2\right)^2+\left(2m+1\right)^2< 9m^2\)
\(\Leftrightarrow m^2-4m+4+4m^2+4m+1< 9m^2\)
\(\Leftrightarrow m^2-1>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
1) <=> 1 - sin2x + sin x + 1 = 0
<=> - sin2x + sin x = 0 <=> sinx.(1 - sin x) = 0 <=> sin x = 0 hoặc sin x = 1
+) sin x = 0 <=> x = k\(\pi\)
+) sin x = 1 <=> x = \(\frac{\pi}{2}+k2\pi\)
2) <=> 2cos x - 2(2cos2 x - 1) = 1 <=> -4cos2 x + 2cos x + 1 = 0
\(\Delta\)' = 5 => cosx = \(\frac{-1+\sqrt{5}}{-4}\) (Thỏa mãn) hoặc cosx = \(\frac{-1-\sqrt{5}}{-4}=\frac{\sqrt{5}+1}{4}\)(Thỏa mãn)
cosx = \(\frac{-1+\sqrt{5}}{-4}\) <=> x = \(\pm\) arccos \(\frac{-1+\sqrt{5}}{-4}\) + k2\(\pi\)
cosx = \(\frac{\sqrt{5}+1}{4}\) <=> x =\(\pm\) arccos \(\frac{\sqrt{5}+1}{4}\) + k2\(\pi\)
Vậy....3) chia cả 2 vế cho 2 ta được:\(\frac{1}{2}\sin x-\frac{\sqrt{3}}{2}\cos x=\frac{1}{2}\) <=> \(\cos\frac{\pi}{3}\sin x\sin-\sin\frac{\pi}{3}\cos x=\sin\frac{\pi}{6}\Leftrightarrow\sin\left(x-\frac{\pi}{3}\right)=\sin\frac{\pi}{6}\)<=> \(x-\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\) hoặc \(x-\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\)<=> \(x=\frac{\pi}{2}+k2\pi\) hoặc \(x=\frac{7\pi}{6}+k2\pi\)Vậy....1) Có: m4 - m2 + 1 = (m2 - \(\frac{1}{2}\))2 + \(\frac{3}{4}\) > 0 với mọi m
|x2 - 1| = m4 - m2 + 1
<=> x2 - 1 = m4 - m2 + 1 (1) hoặc x2 - 1 = - ( m4 - m2 + 1 ) (2)
Rõ ràng : nếu x1 là nghiệm của (1) thì x1 không là nghiệm của (2)
Để pt đã cho 4 nghiệm phân biệt <=> pt (1) và (2) đều có 2 nghiệm phân biệt
(1) <=> x2 = m4 - m2 + 2 > 0 với mọi m => (1) luôn có 2 nghiệm phân biệt
(2) <=> x2 = - m4 + m2 . Pt có 2 nghiệm phân biệt <=> m2 - m4 > 0 <=> m2.(1 - m2) > 0
<=> m \(\ne\) 0 và 1 - m2 > 0
<=> m \(\ne\) 0 và -1 < m < 1
Vậy với m \(\ne\) 0 và -1 < m < 1 thì pt đã cho có 4 nghiệm pb
1.
\(\Leftrightarrow1-2sin^2x+sinx+m=0\)
\(\Leftrightarrow2sin^2x-sinx-1=m\)
Đặt \(sinx=t\Rightarrow t\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
Xét hàm \(f\left(t\right)=2t^2-t-1\) trên \(\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)
\(f\left(-\dfrac{1}{2}\right)=0\) ; \(f\left(\dfrac{1}{4}\right)=-\dfrac{9}{8}\) ; \(f\left(\dfrac{\sqrt{2}}{2}\right)=-\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow-\dfrac{9}{8}\le f\left(t\right)\le0\Rightarrow-\dfrac{9}{8}\le m\le0\)
Có 2 giá trị nguyên của m (nếu đáp án là 3 thì đáp án sai)
2.
ĐKXĐ: \(sin2x\ne1\Rightarrow x\ne\dfrac{\pi}{4}\) (chỉ quan tâm trong khoảng xét)
Pt tương đương:
\(\left(tan^2x+cot^2x+2\right)-\left(tanx+cotx\right)-4=0\)
\(\Leftrightarrow\left(tanx+cotx\right)^2+\left(tanx+cotx\right)-4=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx+cotx=\dfrac{1+\sqrt{17}}{2}\\tanx+cotx=\dfrac{1-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)
Nghiệm xấu quá, kiểm tra lại đề chỗ \(-tanx+...-cotx\) có thể 1 trong 2 cái đằng trước phải là dấu "+"
1.
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(m+1\right)^2+\left(-3\right)^2\ge m^2\)
\(\Leftrightarrow...\)
2.
\(\Leftrightarrow3\left(\frac{1}{2}-\frac{1}{2}cos2x\right)+4m.sin2x-4=0\)
\(\Leftrightarrow8m.sin2x-3cos2x=5\)
Pt vô nghiệm khi: \(\left(8m\right)^2+\left(-3\right)^2< 5^2\)
\(\Leftrightarrow...\)