Tìm x,y biết \(\frac{x}{5}=\frac{y}{-3}\)và \(x^2+y=34\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn
Bài 2:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Bạn tự làm nha
Bài 1 :
\(\frac{x}{y}=\frac{5}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)
\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)
Mà x ; y cùng dấu nên :
\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)
Bài 2 :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)
\(\frac{x}{10}=3\Rightarrow x=30\)
\(\frac{y}{15}=3\Rightarrow y=45\)
\(\frac{z}{21}=3\Rightarrow z=63\)
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
Vì \(\frac{x}{3}=\frac{y}{4}\)và \(\frac{y}{5}=\frac{z}{6}\)nên ta cố gắng biến đổi sao cho \(\frac{y}{4}\)và\(\frac{y}{5}\)bằng nhau để thành tỉ lệ thức
Biến đổi: \(\frac{x}{3}=\frac{y}{4}\)thành\(\frac{x}{3}=\frac{5y}{20}\)(nhân 5 cho tử và mẫu của \(\frac{y}{4}\)) . Suy ra \(\frac{x}{15}=\frac{y}{20}\)(1)
Biến đổi: \(\frac{y}{5}=\frac{z}{6}\)thành \(\frac{4y}{20}=\frac{z}{6}\). Suy ra \(\frac{y}{20}=\frac{z}{24}\)(2)
Từ (1) và (2) ta có tỉ lệ thức: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)và \(2x+5y-4z=34\)
hay \(\frac{2x}{30}=\frac{5y}{100}=\frac{4z}{96}=\frac{2x+5y-4z}{30+100-96}=\frac{34}{34}=1\)
Tới đây các em tự giải: \(x=15,y=20,z=24\)
Ta có :
\(\hept{\begin{cases}\frac{x}{3}=\frac{y}{4}\\\frac{y}{5}=\frac{z}{6}\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{x}{15}=\frac{y}{20}\\\frac{y}{20}=\frac{z}{24}\end{cases}\Leftrightarrow}\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)
Áp dụng tính chất của dãy tire số bằng nhau , ta có :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=\frac{2x+5y-4z}{30+100-96}=\frac{34}{34}=1\Rightarrow\hept{\begin{cases}x=15\\y=20\\z=24\end{cases}}\)
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Bài làm :
\(\text{Đặt : }\frac{x}{5}=\frac{y}{-3}=k\Rightarrow\hept{\begin{cases}x=5k\\y=-3k\end{cases}}\)
Vì x2 + y = 34 nên :
\(\left(5k\right)^2+\left(-3k\right)=34\Leftrightarrow25k^2-3k=34\)
Đoạn này hình như sai để rồi bạn ạ !
Sửa đề x2 + y2 = 34
Đặt \(\frac{x}{5}=\frac{y}{-3}=k\Rightarrow\hept{\begin{cases}x=5k\\y=-3k\end{cases}}\)
Khi đó (5k)2 + (-3k)2 = 34
=> 25k2 + 9k2 = 34
=> 34k2 = 34
=> k2 = 1
=> k = \(\pm\)1
Khi k = 1 => x = 5 ; y = -3
Khi k = -1 => x = -5 ; y = 3