K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2020

               Bài làm :

\(\text{Đặt : }\frac{x}{5}=\frac{y}{-3}=k\Rightarrow\hept{\begin{cases}x=5k\\y=-3k\end{cases}}\)

Vì x2 + y = 34 nên :

\(\left(5k\right)^2+\left(-3k\right)=34\Leftrightarrow25k^2-3k=34\)

Đoạn này hình như sai để rồi bạn ạ !

26 tháng 10 2020

Sửa đề x2 + y2 = 34

Đặt \(\frac{x}{5}=\frac{y}{-3}=k\Rightarrow\hept{\begin{cases}x=5k\\y=-3k\end{cases}}\)

Khi đó (5k)2 + (-3k)2 = 34

=> 25k2 + 9k2 = 34

=> 34k2 = 34

=> k2 = 1

=> k = \(\pm\)1

Khi k = 1 => x = 5 ; y = -3

Khi k = -1 => x = -5 ; y = 3

18 tháng 7 2017

1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)

Thế y=\(\frac{-2x}{5}\) ta được:

x+\(\frac{-2x}{5}\)=30     \(\Rightarrow\frac{5x-2x}{5}=30\)

\(\Rightarrow3x=150\)\(\Rightarrow x=50\)

=>y=30-x=30-50=-20.

Vậy x=50; y=-20.

Những bài khác tương tự bạn nhé!

5 tháng 11 2017

bạn kia làm đúng rồi

k tui nha 

thank

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

12 tháng 7 2016

\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)

\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn

Bài 2:

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c dãy tỉ số bằng nhau:

Bạn tự làm nha

12 tháng 7 2016

Bài 1 :

\(\frac{x}{y}=\frac{5}{3}\)

\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )

\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)

\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)

Mà x ; y cùng dấu nên :

\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)

Bài 2 :

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)

\(\frac{x}{10}=3\Rightarrow x=30\)

\(\frac{y}{15}=3\Rightarrow y=45\)

\(\frac{z}{21}=3\Rightarrow z=63\)

3 tháng 1 2018

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5

=> x-1/2 = 5 => x-1=5 => x=6

y-2/3 = 5 => y-2 = 15 => y =17

z-3/4=5 => z-3=20 => z=23

3 tháng 1 2018

Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k

Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3

=> x=2.3=6

y=3.3=9

z=5.3=15

4 tháng 9 2020

Vì \(\frac{x}{3}=\frac{y}{4}\)và \(\frac{y}{5}=\frac{z}{6}\)nên ta cố gắng biến đổi sao cho \(\frac{y}{4}\)\(\frac{y}{5}\)bằng nhau để thành tỉ lệ thức

Biến đổi: \(\frac{x}{3}=\frac{y}{4}\)thành\(\frac{x}{3}=\frac{5y}{20}\)(nhân 5 cho tử và mẫu của \(\frac{y}{4}\)) . Suy ra \(\frac{x}{15}=\frac{y}{20}\)(1)

Biến đổi: \(\frac{y}{5}=\frac{z}{6}\)thành \(\frac{4y}{20}=\frac{z}{6}\). Suy ra \(\frac{y}{20}=\frac{z}{24}\)(2)

Từ (1) và (2) ta có tỉ lệ thức: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)và \(2x+5y-4z=34\)

hay \(\frac{2x}{30}=\frac{5y}{100}=\frac{4z}{96}=\frac{2x+5y-4z}{30+100-96}=\frac{34}{34}=1\)

Tới đây các em tự giải: \(x=15,y=20,z=24\)

4 tháng 9 2020

Ta có :

\(\hept{\begin{cases}\frac{x}{3}=\frac{y}{4}\\\frac{y}{5}=\frac{z}{6}\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{x}{15}=\frac{y}{20}\\\frac{y}{20}=\frac{z}{24}\end{cases}\Leftrightarrow}\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)

Áp dụng tính chất của dãy tire số bằng nhau , ta có :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=\frac{2x+5y-4z}{30+100-96}=\frac{34}{34}=1\Rightarrow\hept{\begin{cases}x=15\\y=20\\z=24\end{cases}}\)

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

9 tháng 12 2016

a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{5x}{15}=\frac{2y}{8}=\frac{5x-2y}{15-8}=\frac{28}{7}=4\)

=> x = 4.3 = 12

y = 4.4 = 16

b, \(x:2=y:\left(-5\right)\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)

=> x = (-1).2 = -2

y = (-1)(-5) = 5

c, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-10}=\frac{10}{10}=1\)

=> x = 8

y =12

z = 15

4 tháng 7 2017

Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)

=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

=>x=27;z=36;z=60

Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)

+)k=-2 => x=-4;y=-5

+)k=2 => x=4;y=5

Vậy x=-4;y=-5 hoặc x=4;y=5