Chứng minh rằng:
a) sin4 α+ sin2α.cos2α+cos2α=1
b)(1+tanα).(1+cotα).sinα.cosα=1+2.sinα.cosα
c)sin6α+cos6α+3sin2α.cos2α=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1^2=1\)
Ta có:
= sin 6 α + cos 6 α + 3 sin 2 α . cos 2 α . ( sin 2 α + cos 2 α ) v ì sin 2 α + cos 2 α = 1
= ( sin 2 α ) 3 + 3 sin 2 α 2 cos 2 + 3 sin 2 α . cos 2 α 2 + cos 2 α 3
Đáp án cần chọn là: B
Ta có:
`sin^4 \alpha + cos^4 \alpha -sin^6 \alpha- cos^6\alpha`
`=sin^4\alpha+cos^4\alpha-(sin^2\alpha+cos^2\alpha)(sin^4\alpha-sin^2\alpha cos^2\alpha+cos^4\alpha)`
`=sin^4\alpha + cos^4\alpha-(sin^4\alpha-sin^2\alpha cos^2\alpha+cos^4\alpha)`
`=sin^2\alpha cos^2\alpha(ĐPCM)`
A = 2 ( sin 2 α + cos 2 α ) ( sin 4 α + cos 4 α - sin 2 α cos 2 α )
- 3 ( sin 4 α + cos 4 α )
= - sin 4 α - cos 4 α - 2 sin 2 α cos 2 α
= - ( sin 2 α + cos 2 α ) 2 = - 1
Chọn C.
Ta có tan α – cotα = 1
Do suy ra tanα < 0 nên
Thay
và
vào P ta được
Cho α là góc nhọn, sinα = 1/2. Tính cosα; tanα; cotα
Ta có: sin 2 α + cos 2 α = 1
Vì \(\dfrac{\pi}{2}< \alpha< \pi\) \(\Rightarrow\) cos \(\alpha\) < 0
\(\Rightarrow\) cos \(\alpha\) = \(-\sqrt{1-sin^2\alpha}\) = \(-\dfrac{2\sqrt{2}}{3}\)
\(\Rightarrow\) tan \(\alpha\) = \(\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{2}}{4}\)
\(\Rightarrow\) cot \(\alpha\) = \(\dfrac{1}{tan\alpha}\) = \(-2\sqrt{2}\)
Chúc bn học tốt!
Đặt \(\tan\alpha=a;\cot\alpha=b\)
Theo đề, ta có: \(\left(a+b\right)^2-\left(a-b\right)^2\)
\(=a^2+2ab+b^2-a^2+2ab-b^2\)
\(=4ab=4\cdot\tan\alpha\cdot\cot\alpha=4\)
j vậy trời, mik báo cáo đấy;-;
bạn có trả lời nhầm bài khum thế, nếu bạn bt làm thì giúp mik iii, plss