CM: \(4a^3+14a^2+6a+12⋮2a+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét : \(\frac{4a^3+14a^2+6a+12}{1+2a}=\frac{2a^2\left(2a+1\right)+6a\left(2a+1\right)+12}{1+2a}=2a^2+6a+\frac{12}{1+2a}\)
Để \(\left(4a^3+14a^2+6a+12\right)⋮\left(1+2a\right)\) thì \(1+2a\inƯ\left(12\right)\)
Bạn tự liệt kê
Ta có
\(4a^3+14a^2+6a+12\)
\(=a\left(4a^2+14a+6\right)+12\)
\(=a\left[\left(4a^2+2a\right)+\left(12a+6\right)\right]+12\)
\(=a\left[2a\left(2a+1\right)+6\left(2a+1\right)\right]+12\)
\(=a\left(2a+1\right)\left(2a+6\right)+12\)
Vì \(4a^3+14a^2+6a+12\) chia hết cho 2a+1
\(=>a\left(2a+1\right)\left(2a+6\right)+12\) chia hết cho 2a+1
Mà a(2a+1)(2a+6) chia hết cho 2a+1
=> 12 chia hết cho 2a+1
=> \(2a+1\inƯ_{12}\)
Mặt khác 2a+1 lẻ
=> \(2a+1\in\left\{1;3;-1;-3\right\}\)
=> \(a\in\left\{0;1;-1;-2\right\}\)
Vậy \(a\in\left\{0;1;-1;-2\right\}\)
cái câu 1 kia lạ thật, phần phía trc có ngoặc thì phải nhân vs hạng tử nào đó chứ nhỉ? Và mk tính ra kq là \(-\cos^22\alpha\)
\(VT=\cos^4\alpha+\sin^4\alpha-2\cos^6\alpha-2\sin^6\alpha\)
\(=\sin^4\alpha\left(1-2\sin^2\alpha\right)-\cos^4\alpha\left(2\cos^2\alpha-1\right)\)
\(=\sin^4\alpha.\cos2\alpha-\cos^4\alpha.\cos2\alpha\)
\(=\cos2\alpha\left(\sin^2\alpha.\sin^2\alpha-\cos^4\alpha\right)\)
\(=\cos2\alpha.\left[\left(1-\cos^2\alpha\right)^2-\cos^4\alpha\right]\)
\(=\cos2\alpha.\left(1-2\cos^2\alpha\right)\)
\(=-\cos^22\alpha\)
2/ \(VT=\frac{1-\cos^2\alpha+\cos^2\alpha}{1+\sin2\alpha}=\frac{1}{1+\sin2\alpha}\)
\(VP=\frac{\frac{\sin\alpha}{\cos\alpha}-1}{\frac{\sin\alpha}{\cos\alpha}+1}=\frac{\frac{\sin\alpha-\cos\alpha}{\cos\alpha}}{\frac{\sin\alpha+\cos\alpha}{\cos\alpha}}=\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)
hmm, câu 2 có vẻ vô lí, bn thử nhân chéo lên mà xem, nó ko ra KQ = nhau đâu
1)
\((\cos^4a+\sin ^4a)-2(\cos^6a+\sin ^6a)=(\cos ^4a+\sin ^4a)-2(\cos ^2a+\sin ^2a)(\cos ^4a-\cos ^2a\sin ^2a+\sin ^4a)\)
\(=(\cos ^4a+\sin ^4a)-2(\cos ^4a-\cos ^2a\sin ^2a+\sin ^4a)\)
\(=-(\cos ^4a-2\sin ^2a\cos ^2a+\sin ^4a)=-(\cos ^2a-\sin ^2a)^2=-\cos ^22a\)
(bạn xem lại đề. Nếu thay $(\cos ^4a+\sin ^4a)$ thành $3(\cos ^4a+\sin ^4a)$ thì kết quả thu được là $(\cos ^2a+\sin ^2a)^2=1$ như yêu cầu)
2) Sửa đề:
\(\frac{\sin ^2a-\cos ^2a}{1+2\sin a\cos a}=\frac{(\sin a-\cos a)(\sin a+\cos a)}{\sin ^2a+\cos ^2a+2\sin a\cos a}=\frac{(\sin a-\cos a)(\sin a+\cos a)}{(\sin a+\cos a)^2}\)
\(=\frac{\sin a-\cos a}{\sin a+\cos a}=\frac{\frac{\sin a}{\cos a}-1}{\frac{\sin a}{\cos a}+1}=\frac{\tan a-1}{\tan a+1}\)
Bạn lưu ý viết đề bài chuẩn hơn.
Đề bài không sai, biểu thức vẫn phụ thuộc A
Phản ví dụ: với \(a=0\Rightarrow A=2\)
Với \(a=\dfrac{\pi}{2}\Rightarrow A=-13\)
Rõ ràng \(2\ne-13\)
Biểu thức đúng:
\(A=2\left(sin^6a+cos^6a\right)-3\left(sin^4a+cos^4a\right)\)