Tính tổng: 1x2 + 2x3 + 3x4 +...+ 2019x2020 + 2020x2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguồn: Tính tổng: 1x2 + 2x3 + 3x4 +...+ 2019x2020 + 2020x2021 - Hoc24
Đặt A=1.2+2.3+3.4+.........+2019.2020+2020.2021A=1.2+2.3+3.4+.........+2019.2020+2020.2021
⇒3A=1.2.3+2.3.3+3.4.3+.....+2019.2020.3+2020.2021.3⇒3A=1.2.3+2.3.3+3.4.3+.....+2019.2020.3+2020.2021.3
=1.2.3+2.3.(4−1)+3.4.(5−2)+.....+2020.2021.(2022−2019)=1.2.3+2.3.(4−1)+3.4.(5−2)+.....+2020.2021.(2022−2019)
=1.2.3+2.3.4−1.2.3+3.4.5−2.3.4+...+2020.2021.2022−2019.2020.2021=1.2.3+2.3.4−1.2.3+3.4.5−2.3.4+...+2020.2021.2022−2019.2020.2021
=2020.2021.2022=2020.2021.2022
⇒A=2020.2021.20223
\(C=\dfrac{2}{1\times2}+\dfrac{2}{2\times3}+...+\dfrac{2}{2019\times2020}\)
\(=2\left(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{2019\times2020}\right)\)
\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\right)\)
\(=2\left(1-\dfrac{1}{2020}\right)=2.\dfrac{2019}{2020}=\dfrac{2019}{1010}\)
S= 2x(1/1x2+1/2x3+1/3x4+...........+1/2020x2021)
S=2x(1-1/2+1/2-1/3+1/3-...+1/2020-1/2021)
S=2x(1-1/2021)
S=2x2020/2021
S=4040/2021
2019/2010<3/2<4040/2021
=>2019/2010<S
S = 2 x (\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\)\(\frac{2}{2020\times2021}\))
= 2 x (\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\)\(\frac{1}{2020\times2021}\))
= 2 x ( \(1-\frac{1}{2021}\))
= \(2\times\frac{2020}{2021}\)
= \(\frac{4040}{2021}\)
= \(\frac{4042-2}{2021}\)
\(=2-\frac{2}{2021}\)
Ta có :
\(\frac{2019}{2010}=\frac{2020-1}{2010}=2-\frac{1}{2010}=2-\frac{2}{2020}\)
Ta thấy \(\frac{2}{2021}< \frac{2}{2020}\)
nên \(2-\frac{2}{2021}>2-\frac{2}{2020}\)
Vậy \(S\)\(>\frac{2019}{2010}\)
A= 1x2+2x3+3x4+...+98x99 A x 3= 1x2 x (3-0) +2x3x (4-1)+3x4 x (5-2)+...+98x99x (100-97) = 1x2x3+2x3x4+......98x99x100- (1x2x0+ 2x3x1+....+ 98x99x97) = 98x99x100
A= 1x2+2x3+3x4+...+98x99
A x 3= 1x2 x (3-0) +2x3x (4-1)+3x4 x (5-2)+...+98x99x (100-97)
= 1x2x3+2x3x4+......98x99x100- (1x2x0+ 2x3x1+....+ 98x99x97)
= 98x99x100.
Đặt A = 1×2 + 2×3 + 3×4 + ... + 19×20
⇒ 3A = 1×2×3 + 2×3×3 + 3×4×3 + ... + 19×20×3
= 1×2×3 + 2×3×(4 - 1) + 3×4×(5 - 2) + ... + 19×20×(21 - 18)
= 1×2×3 - 1×2×3 + 2×3×4 - 2×3×4 + 3×4×5 - ... - 18×19×20 + 19×20×21
= 19×20×21
= 7980
⇒ A = 7980 : 3 = 2660
Đặt A=1.2+2.3+3.4+...+99.100
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3A=99.100.101
A=333300
Đặt A = 1.2 + 2.3 + 3.4 + ... + 2019.2020 + 2020.2021
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2019.2020.3 + 2020.2021.3
=> 3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2019.2020.(2021 - 2018) + 2020.2021.(2022 - 2019)
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2019.2020.2021 - 2018.2019.2020 + 2020.2021.2022 - 2019.2020.2021
=> 3A = 2020.2021.2022
=> A = 2 751 551 080
Đặt \(A=1.2+2.3+3.4+.........+2019.2020+2020.2021\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+.....+2019.2020.3+2020.2021.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+.....+2020.2021.\left(2022-2019\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+2020.2021.2022-2019.2020.2021\)
\(=2020.2021.2022\)
\(\Rightarrow A=\frac{2020.2021.2022}{3}\)