K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 10 2020

Lời giải:

Phép tịnh tiến qua vecto $v$ biến $(d_3)$ thành chính nó thì $\overrightarrow{v}$ vecto chỉ phương của $(d_3)$

$\Rightarrow \overrightarrow{v}=(a,0)$

$T_{\overrightarrow{v}}(d_1)=d_2$

\(\Rightarrow \left\{\begin{matrix} 2x-y+2=0\\ 2(x+a)-y+1=0\end{matrix}\right.\Rightarrow a=\frac{1}{2}\)

Vậy $\overrightarrow{v}=(\frac{1}{2}, 0)$

14 tháng 5 2017

Đáp án là B

21 tháng 5 2017

Chọn D.

Vì d 1  không song song hoặc trùng với  d 2  nên không tồn tại phép tịnh tiến nào biến  d 1 thành  d 2

8 tháng 3 2017

Đáp án D

Vì d 1  không song song hoặc trùng với d 2  nên không tồn tại phép tịnh tiến nào biến  d 1 thành  d 2 .

10 tháng 12 2023

a: loading...

b: Vì (d3)//(d2) nên \(\left\{{}\begin{matrix}a=-1\\b\ne2\end{matrix}\right.\)

Vậy: (d3): y=-x+b

Thay x=1 vào (d1), ta được:

\(y=2\cdot1=2\)

Thay x=1 và y=2 vào y=-x+b, ta được:

\(b-1=2\)

=>b=2+1=3

 

24 tháng 11 2021

\(b,\text{PT hoành độ giao điểm: }-2x+5=x-1\Leftrightarrow x=2\Leftrightarrow y=1\Leftrightarrow A\left(2;1\right)\\ \text{Vậy }A\left(2;1\right)\text{ là giao điểm }\left(d_1\right)\text{ và }\left(d_2\right)\\ c,\text{Gọi }\left(d_3\right):y=ax+b\left(a\ne0\right)\text{ là đt cần tìm}\\ \left(d_3\right)\text{//}\left(d_1\right)\text{ và }M\left(-2;1\right)\in\left(d_3\right)\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b\ne5\\-2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=-1\end{matrix}\right.\\ \Leftrightarrow\left(d_3\right):y=-2x-1\)

24 tháng 11 2021

cẩm ơn anh 

 

25 tháng 12 2023

d3//d2 \(\Rightarrow a=-1\)

d3 cắt d1 tại điểm có hoành độ bằng 1

\(\Rightarrow a+b=2\)

Ta có hệ

\(\left\{{}\begin{matrix}a=-1\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)

2 tháng 5 2017

Đáp án D

(d) biến thành chính nó khi vecto tịnh tiến cùng phương với (d). Mà (d) có một VTCP là  1 ; 2