cho △ ABC vuông tại A (AB>AC),đường cao AH(H ∈ BC).Qua C vẽ đường thẳng vuông góc với CB tại C cắt tia BA tại D.Gọi K là hình chiếu của C trên cạnh DH|
a) Chứng minh CH.CB=AD.AB
b) góc AKD= góc CBD
-giúp mik với-
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCAB vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(CH\cdot CB=AC^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔCDB vuông tại C có CA là đường cao ứng với cạnh huyền DB, ta được:
\(AD\cdot AB=CA^2\left(2\right)\)
Từ (1) và (2) suy ra \(CH\cdot CB=AD\cdot AB\)
nho thay co giup em voi em dungf tu giac noi tiep khong dung
a: Xét ΔCKB vuông tại K và ΔCHI vuông tại H có
góc KCB chung
=>ΔCKB đồng dạng với ΔCHI
=>CK/CH=CB/CI
=>CK*CI=CH*CB=CA^2
b: Xét ΔBHD vuông tại H và ΔBKC vuông tại K có
góc KBC chung
=>ΔBHD đồng dạng với ΔBKC
=>BH/BK=BD/BC
=>BD*BK=BH*BC=BA^2
c: BA^2=BD*BK
BA=BM
=>BM^2=BD*BK
=>ΔBMD vuông tại M
=>góc BMD=90 độ
d: SỬa đề: EA/EB*NB/NC*FC/FA
=NA/NB*NB/NC*NC/NA
=1
a: Xét ΔMHC và ΔMKC có
CH=CK
\(\widehat{HCM}=\widehat{KCM}\)
CM chung
Do đó: ΔMHC=ΔMKC
Suy ra: MH=MK
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC