\(\hept{\begin{cases}\frac{x}{y^2+1}=\frac{y^4}{x^2+y^2}\\\sqrt{4x+5}+\sqrt{x^2+8}=\end{cases}}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
xin lỗi các bạn, chỗ trên là bằng 6 nha các bạn !
ĐK: x và y không đồng thời bằng 0
\(\hept{\begin{cases}\frac{x}{y^2+1}=\frac{y^4}{x^2+y^2}\left(1\right)\\\sqrt{4x+5}+\sqrt{x^2+8}=6\left(2\right)\end{cases}}\)
\(\sqrt{4x+5}+\sqrt{x^2+8}=6\Leftrightarrow\left(\sqrt{4x+5}-3\right)+\left(\sqrt{x^2+8}-3\right)=0\Leftrightarrow\frac{4\left(x-1\right)}{\sqrt{4x+5}+3}+\frac{\left(x+1\right)\left(x-1\right)}{\sqrt{x^2+8}+3}=0\)\(\Leftrightarrow\left(x-1\right)\left(\frac{4}{\sqrt{4x+5}+3}+\frac{x+1}{\sqrt{x^2+8}+3}\right)=0\)
Dễ thấy phương trình\(\frac{4}{\sqrt{4x+5}+3}+\frac{x+1}{\sqrt{x^2+8}+3}\)không có nghiệm số thực nên x - 1 = 0 hay x = 1
Thay x = 1 vào phương trình (1), ta được\(\frac{1}{y^2+1}=\frac{y^4}{1+y^2}\Leftrightarrow y^4=1\Rightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
Vậy hệ phương trình có 2 nghiệm \(\left(x,y\right)=\left\{\left(1;1\right);\left(1;-1\right)\right\}\)