Cho hình thang ABCD.Gọi I là trung điểm của BC,K là trung điểm cảu BC, K là trung điểm AD
a) Chứng Minh BK = ID
b)Nối AC cắt BK,ID tại M,N
chứng minh AM=MN=NC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 451 người nhận rồi
OK
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{MBC}=\widehat{NCB}\)
nên BMNC là hình thang cân
b: Xét ΔABC có
H là trung điểm của BC
N là trung điểm của AC
DO đó: HN là đường trung bình
=>HN//AB và HN=AB/2
=>HN=AM và HN=AM
Xét tứ giác AMHN có
HN//AM
HN=AM
Do đó: AMHN là hình bình hành
mà AM=AN
nên AMHN là hình thoi
c: Ta có: AMHN là hình thoi
nên Hai đường chéo AH và MN cắt nhau tại trung điểm của mỗi đường
=>O là trung điểm của AH
Xét tứ giác ABHK có
HK//AB
HK=AB
DO đó: ABHK là hình bình hành
Suy ra: Hai đường chéo AH và BK cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của AH
nên O là trung điểm của BK
a: Xét ΔADC có
M là trung điểm của AD
MN//DC
Do đó: N là trung điểm của AC
Xét ΔCAB có
N là trung điểm của CA
NK//AB
Do đó:K là trung điểm của CB
b: \(AB=\dfrac{1}{2}\cdot DC=\dfrac{1}{2}\cdot20=10\left(cm\right)\)
Xét ΔADC có M,N lần lượt là trung điểm của AD,AC
=>MN là đường trung bình của ΔADC
=>\(MN=\dfrac{DC}{2}=10\left(cm\right)\)
Xét ΔCAB có N,K lần lượt là trung điểm của CA,CB
=>NK là đường trung bình của ΔCBA
=>\(NK=\dfrac{AB}{2}=5\left(cm\right)\)
MN+NK=MK
=>MK=10+5=15(cm)
Kiểm tra lại đề nhé!