K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

M A B C D

24 tháng 2 2017

A B C D M

22 tháng 11 2020

Qua M kẻ NP vuông góc với AB ( N thuộc AB, P thuộc CD)

Ta có:  MA+MB+MC+MD=(MA+MD)+(MB+MC) < AN+ND+NC+NB =AB+AC+AD (ĐPCM)

AH
Akai Haruma
Giáo viên
26 tháng 11 2017

Lời giải:

Đại số lớp 7

Qua M kẻ \(FG\perp AB,CD\) như hình vẽ

Ta thấy $AFGD$ và $BFGC$ có các góc đều là góc vuông nên chúng là hình chữ nhật. Do đó \(AF=DG; BF=CG\)

Áp dụng định lý Pitago cho các tam giác vuông ta có:

\(\left\{\begin{matrix} MA^2=MF^2+FA^2\\ MB^2=MF^2+FB^2\\ MC^2=MG^2+GC^2\\ MD^2=MG^2+GD^2\end{matrix}\right.\)

\(\Rightarrow MA^2+MC^2-(MB^2+MD^2)=FA^2+GC^2-(FB^2+GD^2)\)

Do \(AF=DG; BF=CG\Rightarrow AF^2=DG^2; BF^2=GC^2\)

\(\Rightarrow FA^2+GC^2-(FB^2+GD^2)=0\)

\(\Leftrightarrow MA^2+MC^2-(MB^2+MD^2)=0\)

\(\Leftrightarrow MA^2+MC^2=MB^2+MD^2\)

Ta có đpcm

26 tháng 11 2017

Mình trả lời luôn câu b hi

undefined

14 tháng 1 2018

Ta có: SEHDG = SADC – SAHE – SEGC.

SEFBK = SABC – SAFE – SEKC.

Để chứng minh SEHDG = SEFBK,

ta đi chứng minh SADC = SABC; SAHE = SAFE ; SEGC = SEKC.

+ Chứng minh SADC = SABC.

SADC = AD.DC/2;

SABC = AB.BC/2.

ABCD là hình chữ nhật ⇒ AB = CD, AD = BC

⇒ SADC = SABC.

+ Chứng minh SAHE = SAFE (1)

Ta có: EH // AF và EF // AH

⇒ AHEF là hình bình hành

Mà Â = 90º

⇒ AHEF là hình chữ nhật

⇒ SAHE = SAFE (2)

+ Chứng minh SEGC = SEKC

EK // GC, EG // KC

⇒ EGCK là hình bình hành

Mà D̂ = 90º

⇒ EGCK là hình chữ nhật

⇒ SEGC = SEKC (3).

Từ (1); (2); (3) suy ra đpcm.