K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2023

a. Did you have good seats ?
b. How long did the concert last?
c. What did you do lát night?
d. Did you pay yourselves for them ?
e. Which did she sing songs?
f. How much did the tickets cost?
g. Who did you go with?

26 tháng 11 2023

`#9809`

a. Did you have good seats?

b. How long did the last concert?

c. What did you do last night?

d. Did you pay yourself for them?

e. Which song did she sing?

f. How much did the tickets cost?

g. Who did you go with?

a: \(\Leftrightarrow\left(a+1\right)^2-4a\ge0\)

hay \(\left(a-1\right)^2>=0\)(luôn đúng)

b: \(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(c^2+d^2\right)\left(a^2+b^2\right)=VP\)

6 tháng 1 2022

Cảm ơn  chị rất nhiều

20 tháng 8 2016

Với a bất kì thì ta chọn b sao cho b=a-4

Khi đó: ab+4=a(a-4)+4

                  =a2-4a+4

                  =a2-2.2.a+22

                  =(a-2)2

Vậy với a E N ta luôn tìm được b sao cho ab+4 là số chính phương

20 tháng 8 2016

gieo mưa có ngày gặp bão . hehe

3 tháng 7 2015

Xét dãy số sau:

2003; 20032003;....; 20032003...2003 (Có n số 2003; n > 2004 )

Nhận xét: các số trong dãy đều là các số lẻ nên không chia hết cho 2004 

=> Số bất kì trong dãy chia cho 2004 có thể dư 1;2;3;..; 2003

Dãy trên có nhiều hơn 2003 số nên theo Nguyên lý Dirichlê => có ít nhất 2 số chia cho 2004  có cùng số dư

=> số có dạng 20032003...2003...2003 (có 2003 + m số 2003 ) và số 2003..2003 (có m số 2003 ) có cùng số dư

=> Hiệu của chúng chia hết cho 2004  

Hay số 20032003...200300..00 (có 2003 số 2003 ) chia hết cho 2004

3 tháng 7 2015

Xét dãy số gồm 2005 số hạng: 
2003, 20032003, ...2003.....(2003 con số 2003).. 2003, 
- xét phép chia từng số hạng của dãy trên cho số 2004 (2005 phép chia được thực hiện), khi đó chỉ có thể xảy ra 2004 số dư 1, 2, 3.....2004 ( không có dư 0 vì 2003..2003 không thể chia hết cho 2004 lí do 2004 là số chẳn chia hết cho 2, trong khi số có dạng 2003...2003 lẻ, không thể chia hết cho 2 => tất nhiên k thể chia hết cho 2004). 
- từ suy luận trên ta thấy có ít nhất hai phép chia trong 2005 phép chia có cùng số dư, 
giả sử hai số hạng thỏa đk trên là A và B (A<B) 
hay gọi dạng cụ thể là: A=2003...2003 (n số 2003), B=2003..2003 (m số 2003), m>n 
khi đó xét số D=B-A=2003...2003..000 (có n số 2003 và m-n số 0 ) , rõ ràng là D chia hết cho 2004 

Kết luận : tồn tại số theo đề bài cần chứng minh

1 tháng 4 2023

\(\left(m-1\right)x^2-2mx+m-4=0\)

Theo Vi - ét , ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2m}{m-1}\\x_1x_2=\dfrac{c}{a}=\dfrac{m-4}{m-1}\end{matrix}\right.\)

Ta có :

\(A=3\left(x_1+x_2\right)+2x_1x_2-8\)

\(=3\left(\dfrac{2m}{m-1}\right)+2\left(\dfrac{m-4}{m-1}\right)-8\)

\(=\dfrac{6m}{m-1}+\dfrac{2m-8}{m-1}-8\)

\(=\dfrac{6m+2m-8}{m-1}-8\)

\(=\dfrac{8m-8}{m-1}-8\)

\(=\dfrac{8\left(m-1\right)}{m-1}-8\)

\(=8-8\)

\(=0\)

Vậy biểu thức A không phụ thuộc giá trị m

1 tháng 4 2023

uii cảm ơn bạn nhiều nhakk<3.

6 tháng 3 2020

Ta có 0,7×(2003^2003-1997^1997)

= 0,7×((2003^4)^500 ×2003^3-(1997^4)^499  × 1997

= 0,7×( ....1×...7-....1×.....7)

=0,7×......0

=7

Vậy biểu thức đề bài là số tự nhiên 

NHỚ K VÀ

3 tháng 6 2016

- xét dãy số gom  2002 số hạng sau :

2003, 2003.... 2003 , 2003 ... 2003

2002 lan 2003 

chia tất cả số hạng của dãy số 2002 có 2002 số dư từ 1 đến 2002[ ko thể có số dư 0 vì các số hạng là số lẻ ]

có 2002 phép chia nên theo nguyên tắc dirichlet  phải có ít nhất 2 số có cùng số dư khi chia 2002

giả sử 2 số đó là am và an [m,n N];  1< = m

voi am = 2003 2003... 2003; an = 2003 2003 ... 2003

ta có :[an- am] chia het cho 2002

hay 2003 2003.... 2003 00 ...00 luon chia het cho 2002

vậy tồn tại có một số dạng 2003 2003 ... 20032003 ..... 200300 ...0 chia het cho 2002

k mk nha