1+5+ 5^2+....+5^99 chứng minh ràng 4A +1 là một luỹ thừa của 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=50+51+...+599
=>5A=5+52+53+...+5100
=>5A-A=4A=(5+52+...+5100)-(50+51+...+599)=5100-1
=>4A+1=5100
\(A=5+5^2+5^3+...+5^{992}\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{993}\)
\(\Rightarrow4A=5A-A=5^2+5^3+5^4+...+5^{993}-5-5^2-5^3-...-5^{992}=5^{993}-5\)
\(\Rightarrow4A+5=5^{993}-5+5=5^{993}=\left(5^3\right)^{331}=125^{331}\) là một lũy thừa của 125
\(5A=5^2+5^3+5^4+...+5^{100}\)
\(4A=5A-A=5^{100}-5\Rightarrow4A+5=5^{100}-5+5=5^{100}\)
A =2+2^1+2^2+2^3+.....+2^99
2A=2^1+2^2+....2^100
2A-A=2^100-2
Vậy A không phải
\(A=2+2^1+2^2+2^3+2^4+...+2^{99}\)
\(2A=2^2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(2A-A=\left(2^2+2^2+2^3+2^4+...+2^{99}+2^{100}\right)-\left(2+2^1+2^2+...+2^{99}\right)\)
\(A=2^{100}\)
Vì \(2^{100}\)là lũy thừa của 2 nên A là lũy thừa của 2
\(A=5+5^2+5^3+5^4+...+5^{992}\)
\(5A=5^2+5^3+5^4+...+5^{993}\)
\(5A-A=\left(5^2+5^3+5^4+...+5^{993}\right)-\left(5+5^2+5^3+5^4+...+5^{992}\right)\)
\(4A=5^{993}-5\)
\(4A+5=5^{993}\)
\(4A+5=\left(5^3\right)^{331}=125^{331}\)
a/ \(A=5+5^2+5^3+..........+3^{2016}\)
\(\Leftrightarrow A=\left(5+5^4\right)+\left(5^2+5^5\right)+...........+\left(5^{2013}+5^{2016}\right)\)
\(\Leftrightarrow A=5\left(1+5^3\right)+5^2\left(1+5^3\right)+..........+5^{2013}\left(1+5^3\right)\)
\(\Leftrightarrow A=5.126+5^2.126+............+5^{2013}.126\)
\(\Leftrightarrow A=126\left(1+5^2+........+5^{2013}\right)⋮126\left(đpcm\right)\)
b/ \(A=5+5^2+5^3+..........+5^{2016}\)
\(\Leftrightarrow5A=5^2+5^3+...............+5^{2016}+5^{2017}\)
\(\Leftrightarrow5A-A=\left(5^2+5^3+........+5^{2017}\right)-\left(5+5^2+.......+5^{2016}\right)\)
\(\Leftrightarrow4A=5^{2017}-5\)
\(\Leftrightarrow4A+5=5^{2017}\)
\(\Leftrightarrow4A+5\) là 1 lũy thừa
c/ Ta có :
\(4A+5=5^{2017}\)
Mà \(4A+5=5^x\)
\(\Leftrightarrow5^{2017}=5^x\)
\(\Leftrightarrow x=2017\)
Vậy ..
a) A=4+42+43+...4100 => 4A=42+43+44+...+4101
=> 4A-A=4101-4 <=> 3A=4101-4 <=> 3A-4=4101 =>đpcm
b) Tương tự
1,
\(A=2^0+2^1+2^2+..+2^{2006}\)
\(=1+2+2^2+...+2^{2016}\)
\(2A=2+2^2+2^3+..+2^{2007}\)
\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)
\(A=2^{2017}-1\)
\(B=1+3+3^2+..+3^{100}\)
\(3B=3+3^2+3^3+..+3^{101}\)
\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)
\(2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{100}-1}{2}\)
\(D=1+5+5^2+...+5^{2000}\)
\(5D=5+5^2+5^3+...+5^{2001}\)
\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)
\(4D=5^{2001}-1\)
\(D=\frac{5^{2001}-1}{4}\)