Cho ΔABC có AB = 14cm, AC = 16cm, \(\widehat{B}=60^o\)
a, Tính BC
b, Tính diện tích tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đồng chí tự vẽ hình nhé.
Kẻ \(AD\perp BC=\left\{D\right\}\)
a, \(\Delta ABD\)có: \(\widehat{ADB}=90^o\)
\(\Rightarrow AD=AB.\sin B\Leftrightarrow AD=16.\sin30=8\sqrt{3}\left(cm\right)\)
\(\Delta ABD\)có: \(\widehat{ADB}=90^o\)
\(\Rightarrow AB^2=AD^2+BD^2\)(định lý Py-ta-go)
hay \(16^2=\left(8\sqrt{3}\right)^2+BD^2\)
\(BD^2=64\)
\(BD=8\left(cm\right)\)
\(\Delta ADC\)có: \(\widehat{ADC}=90^o\)
\(\Rightarrow AC^2=AD^2+CD^2\)(định lý Py-ta-go)
hay \(14^2=\left(8\sqrt{3}\right)^2+CD^2\)
\(CD^2=4\)
\(CD=2\left(cm\right)\)
Ta có: \(BC=CD+BD=2+8=10\left(cm\right)\)
b, \(S_{\Delta ABC}=\frac{AD.BC}{2}=\frac{8\sqrt{3}.10}{2}=40\sqrt{3}\left(cm^2\right)\)
Thật sự tui không biết mình có làm đúng không, sai thì nhớ bảo nhá
Kẻ CH vuông góc với AB tại H . Đặt HB = x ( 0 < x < 16 )
Xét tam giác vuông HBC có : tg 60 = \(\frac{HC}{HB}\Rightarrow HC=tg60^0.HB=x\sqrt{3}\)
Áp dụng định lí Pytago cho tam giác vuông AHC ta có : \(AC^2=AH^2+HC^2\)
\(14^2=\left(16-x\right)^2+3x^2\)
\(\Leftrightarrow x^2-8x+15=0\)
<=> x1 = 3 (tm) và x2 = 5 (tm )
Xét với x = 3 ta có : HB = 3 ; HC = \(3\sqrt{3}\). Áp dụng định lí Pytago cho tam giác vuông HBC ta có :
\(BC=\sqrt{HB^2+HC^2}=\sqrt{3^2+3.3^2}=6\)(cm )
Xét với x = 5 ta có : HB = 5 ; HC = \(5\sqrt{3}\); \(BC=\sqrt{HB^2+HC^2}=\sqrt{5^2+3.5^2}=10\)( cm )
Diện tích tam giác ABC là :
Với HC = 3 căn 3 ta có : HC. AB/2 = 24 căn 3 ( cm2)
với HC = 5 căn 3 ta có : HC.AB = 40 căn 3 ( cm 2 )
cosB=(16^2+BC^2-14^2)/(2*16*BC)
=>BC^2+60=32*BC*cos40
=>BC=21,76cm
S ABC=1/2*21,76*16*sin40=111,90cm2
a) Kẻ đường cao AH
Tam giác AHB vuông tại H , áp dụng HTL cạnh và góc
=> AH = AB .sin 60 = 8 căn 3
=> BH = AB.cos60 = 16.1/2 = 8
TAm giác AHC vuông tại H ; ÁP dụng py ta go tính HC
BC = BH + HC= 8+ \(\sqrt{3}\)=9,732
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
bài giải
chú ý dấu nhân viết tắt bằng kí hiệu *
BC là
60+(12-8)=64 (cm)
diện tích hình tam giác ABC là
(12+8+64):2=42 (cm)
đáp số 42 cm
chúc bạn làm bài tập tốt
dippi
bạn cute thật đó ><
Kẻ đường cao AH ứng với BC
Trong tam giác vuông ACH:
\(sinC=\dfrac{AH}{AC}\Rightarrow AH=AC.sinC\)
\(cosC=\dfrac{CH}{AC}\Rightarrow CH=AC.cosC\)
Trong tam giác vuông ABH:
\(tanB=\dfrac{AH}{BH}\Rightarrow BH=\dfrac{AH}{tanB}=\dfrac{AC.sinC}{tanB}\)
Do đó:
\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AH\left(BH+CH\right)=\dfrac{1}{2}.4,5.sin55^0.\left(\dfrac{4,5.sin55^0}{tan60^0}+4,5.cos55^0\right)\approx8,68\left(cm^2\right)\)
Lời giải:
Kẻ đường cao $AH$ $(H\in BC)$
Xét tam giác vuông $HAB$:
$\frac{BH}{AB}=\cos B\Rightarrow BH=\cos B.AB=\cos 60.14=7$ (cm)
$AH^2=AB^2-BH^2=14^2-7^2=147$ (cm) theo định lý Pitago
$CH=\sqrt{AC^2-AH^2}=\sqrt{16^2-147}=\sqrt{109}$ (cm)
$BC=BH+CH=7+\sqrt{109}$ (cm)
b)
$S_{ABC}=\frac{AH.BC}{2}=\frac{\sqrt{147}(7+\sqrt{109})}{2}$ (cm2)
Hình vẽ: