Giúp e những bài này với ạ1) Cho tam giác ABC. GỌI N, H, V là ba điểm thỏa mãn:\(\overrightarrow{NB} \)-2\(\overrightarrow{NC} \)=\(\overrightarrow{0} \)\(2\overrightarrow{HC}+\overrightarrow{HA}=\overrightarrow{0} \)\(\overrightarrow{VA}+\overrightarrow{VB}=\overrightarrow{0} \)b) chứng minh n,h,v thẳng hàng2) Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác ABC. Còn M là trung...
Đọc tiếp
Giúp e những bài này với ạ
1) Cho tam giác ABC. GỌI N, H, V là ba điểm thỏa mãn:
\(\overrightarrow{NB} \)-2\(\overrightarrow{NC} \)=\(\overrightarrow{0} \)
\(2\overrightarrow{HC}+\overrightarrow{HA}=\overrightarrow{0} \)
\(\overrightarrow{VA}+\overrightarrow{VB}=\overrightarrow{0} \)
b) chứng minh n,h,v thẳng hàng
2) Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác ABC. Còn M là trung điểm BC.
a) so sánh 2 vecto \(\overrightarrow{HA},\overrightarrow{MO}
\)
b) Chứng minh rằng :
i) \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HO} \)
ii)\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG} \)
3)Cho tam giác ABC và một điểm M thỏa mãn hệ thức \(\overrightarrow{BM}=2\overrightarrow{MC} \). Gọi BN là trung tuyến của tam giác ABC và I là trung điểm BN.
Chứng Minh a)\(2\overrightarrow{MB}+\overrightarrow{MA}+\overrightarrow{MC}=4\overrightarrow{MI} \)
b) \(\overrightarrow{AI}+\overrightarrow{BM}+\overrightarrow{CN}=\overrightarrow{CI}+\overrightarrow{BN}+\overrightarrow{AM} \)
4)Cho tam giác ABC, , lấy các điểm M, N, P sao cho \(\overrightarrow{MA}+3\overrightarrow{MB}=6\overrightarrow{NP}-\overrightarrow{NC}=\overrightarrow{PC}+2\overrightarrow{PA}=\overrightarrow{0} \)
a) Biểu diễn \(\overrightarrow{AN} \) qua \(\overrightarrow{AM} \) và \(\overrightarrow{AP} \)
b)Chứng minh M,N,P thẳng hàng
\(MG=\frac{1}{4}GA\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\frac{3}{4}\overrightarrow{GA}\\\overrightarrow{MA}=3\overrightarrow{GM}\end{matrix}\right.\)
\(2\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\)
\(=\overrightarrow{MA}+3\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)=3\overrightarrow{GM}+3\overrightarrow{MG}+\overrightarrow{0}=\overrightarrow{0}\)
b/
Đề sai, đẳng thức đúng phải là: \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=3\overrightarrow{GG'}\)
c/
Đề tiếp tục có vấn đề \(4\overrightarrow{IO}\) ở vế phải điểm O là điểm nào?