K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

có ai biết cách làm thì giúp mk với mai mk cần lắm rồi

18 tháng 5 2021

A B C M D(7;-2) G E AG:3x-y-13=0

Tam giác AMB vuông cân tại M có trọng tâm G => GB=GA (=GD) => G là tâm ngoại tiếp tam giác BAD => ^AGD = 2^ABD = 900

a) \(AG:3x-y-13=0\Leftrightarrow\hept{\begin{cases}x=t\\y=3t-13\end{cases}}\Rightarrow G\left(t_1;3t_1-13\right),A\left(t_2;3t_2-13\right)\)

\(\overrightarrow{DG}=\left(t_1-7;3t_1-11\right)\)\(\overrightarrow{DG}\)vuông góc với VTCP (1;3) của AG

\(\Rightarrow\left(t_1-7\right)+3\left(3t_1-11\right)=0\Leftrightarrow t_1=4\Rightarrow G\left(4;-1\right)\)

\(\Rightarrow\overrightarrow{GA}=\left(t_2-4;3t_2-12\right)\)

Ta có; \(\left(t_2-4\right)^2+\left(3t_2-12\right)^2=GA^2=d^2\left(D,AG\right)=10\)

\(\Leftrightarrow\orbr{\begin{cases}t_2=5\\t_2=3\end{cases}}\Rightarrow\orbr{\begin{cases}A\left(5;2\right)\\A\left(3;-4\right)\end{cases}}\). Mà hoành độ của A nhỏ hơn A nên \(A\left(3;-4\right)\).

b) E là trung điểm BM, có \(\overrightarrow{AG}=\left(1;3\right)\Rightarrow\overrightarrow{AE}=\left(\frac{3}{2};\frac{9}{2}\right)\Rightarrow E\left(\frac{9}{2};\frac{1}{2}\right)\Rightarrow\overrightarrow{ED}=\left(\frac{5}{2};-\frac{5}{2}\right)\)

\(\Rightarrow ED:\hept{\begin{cases}x=7+m\\y=-2-m\end{cases}}\Rightarrow B\left(7+m;-2-m\right)\)

\(\Rightarrow\overrightarrow{GB}=\left(3+m;-1-m\right)\)

Lại có: \(\left(3+m\right)^2+\left(1+m\right)^2=GB^2=GA^2=10\Leftrightarrow\orbr{\begin{cases}m=0\\m=-4\end{cases}}\Rightarrow\orbr{\begin{cases}B\left(7;-2\right)\left(l\right)\\B\left(3;2\right)\end{cases}}\)

Đường thẳng AB: đi qua \(B\left(3;2\right)\),VTCP \(\overrightarrow{AB}\left(0;6\right)\)\(\Rightarrow AB:\hept{\begin{cases}x=3\\y=2+t\end{cases}}\Leftrightarrow x-3=0.\)

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge2  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014

Hơn nữa    A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.  \Leftrightarrow x=\dfrac{1}{4} .

Vậy  GTNN  =  2014