Xác định số a sao cho:
a) 27x2 + a chia hết cho 3x + 2
b) x4 + ax2 + 1 chia hết cho x2 + 2x + 1
c) 3x2 + ax + 27 chia hết cho x + 5 có số dư bằng 2.
Mong các bạn giúp mik vs! Thanks các bn trc nhóa!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)
hay a=7
Bài 1:
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12.
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.
b, a=-2
c,a=-20
Bài2.Xác định a và b sao cho
a)x^4+ax^2+1 chia hết cho x^2+x+1
b)ax^3+bx-24 chia hết cho (x+1)(x+3)
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21
Giải
a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2)
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p)
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi)
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p
Đồng nhất hệ số, ta có:
m = 1
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0)
n + p = a
n + p =0
p = 1
=>n = -1 và n + p = -1 + 1 = 0 = a
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d:
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21
b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**)
giải hệ (*), (**) trên ta được a= 2; b=-26
c) f(x) =x^4-x^3-3x^2+ax+b
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó:
f(x) =(x+1)(x-2).g(x) +2x-3
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1
d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21
f(-1) = -6 ---> -2-a+b =-6 (*)
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**)
Giải hệ (*); (**) trên ta được a=3; b=-1
1: \(\dfrac{f\left(x\right)}{x-3}=\dfrac{2x^2-6x+\left(a+6\right)x-3a-18+3a+19}{x-3}\)
=2x^2+(a+6)+3a+19/x-3
Để f(x)/x-3 dư 4 thì 3a+19=4
=>3a=-15
=>a=-5
2: \(\dfrac{f\left(x\right)}{x-5}=\dfrac{3x^2-15x+\left(a+15\right)x-5a-75+5a+102}{x-5}\)
\(=3x+a+15+\dfrac{5a+102}{x-5}\)
Để dư là 27 thì 5a+102=27
=>5a=-75
=>a=-15
2.
Ta thấy $x^2+2x+1=(x+1)^2$
Để $x^4+ax^2+1$ chia hết cho $x^2+2x+1$ thì trước tiên nó phải chia hết cho $x+1$, tức là số dư khi thực hiện phép chia là $0$
Áp dụng định lý Bê-du về phép chia đa thức, số dư khi chia $f(x)=x^4+ax^2+1$ cho $x+1$ là:
\(f(-1)=(-1)^4+a(-1)^2+1=1+a+1=0\Leftrightarrow a=-2\)
Thử lại:
\(x^4+ax^2+1=x^4-2x^2+1=(x^2-1)^2=(x-1)^2(x+1)^2\vdots (x+1)^2\) (thỏa mãn)
Vậy $a=-2$
3)
Theo định lý Bê-du về phép chia đa thức, số dư khi chia $f(x)=3x^2+ax+27$ cho $x+5$ là
\(f(-5)=3(-5)^2+a(-5)+27=102-5a\)
Để số dư bằng $2$ thì \(102-5a=2\Rightarrow a=20\)
\(3ax^3+3x^2+x+1⋮3x+1\)
\(\Leftrightarrow x=\frac{-1}{3}\) là nghiệm của phương trình
\(\Leftrightarrow3a\left(-\frac{1}{3}\right)^3+3\left(-\frac{1}{3}\right)^2+\left(-\frac{1}{3}\right)+1=0\)
\(\Leftrightarrow-\frac{a}{9}+\frac{1}{3}-\frac{1}{3}+1=0\)
\(\Leftrightarrow1-\frac{a}{9}=0\)
\(\Leftrightarrow a=9\)
Đặt \(Q\left(x\right)=2x^2+x+a\)
Để mà \(Q\left(x\right)⋮x+3\Leftrightarrow Q\left(x\right):x+3\left(dư0\right)\)
Theo định lý \(Bezout:Q\left(-3\right)=0\)( Định lý Bê du=) )
\(\Leftrightarrow2\left(-3\right)^2+\left(-3\right)+a=0\Leftrightarrow15+a=0\Leftrightarrow a=15\)