K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 9 2020

\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-\left(2+\sqrt{2+\sqrt{3}}\right)}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{4-\left(2+\sqrt{3}\right)}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}\)

\(=\sqrt{4-3}=1\)

27 tháng 9 2020

ai làm giúp với chịu rồi

15 tháng 7 2016

\(A=\sqrt{3+\sqrt{5+2\sqrt{3}}.\sqrt{3-\sqrt{5+2\sqrt{3}}}}=\sqrt{\left(3^2\right)-\left(\sqrt{5+2\sqrt{3}}\right)^2}\)

\(=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

\(B=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)

\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-2-\sqrt{2}}=\sqrt{2}.\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}\)

\(=\sqrt{2}.\sqrt{4-2}=\sqrt{2}.\sqrt{2}=2\)

\(C=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2^2-\left(2+\sqrt{2+\sqrt{3}}\right)}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}=\sqrt{2+\sqrt{3}}.\sqrt{2^2-\left(2+\sqrt{3}\right)}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=\sqrt{4-3}=1\)

15 tháng 7 2016

\(D=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\sqrt{4+\sqrt{15}}.\sqrt{2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4^2-15}\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)

\(E=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right).\sqrt{3-\sqrt{5}}\)

\(=\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}\)

\(=2\sqrt{3-\sqrt{5}}+2\sqrt{3+\sqrt{5}}=\sqrt{2}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)

\(=\sqrt{2}.\left(\sqrt{5}-1+\sqrt{5}+1\right)=2\sqrt{10}\)

13 tháng 9 2020

\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-\left(\sqrt{2+\sqrt{2+\sqrt{3}}}\right)^2}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-2-\sqrt{2+\sqrt{3}}}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{4-\left(\sqrt{2+\sqrt{3}}\right)^2}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{4-2-\sqrt{3}}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=\sqrt{2^2-\left(\sqrt{3}\right)^2}=\sqrt{4-3}=1\)

a: \(A=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

b: \(\sqrt{2}\cdot B=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)

\(\Leftrightarrow B\sqrt{2}=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)

\(\Leftrightarrow B\sqrt{2}=4\sqrt{5}\)

hay \(B=2\sqrt{10}\)

d: \(D\sqrt{2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)

\(=2\sqrt{5}-2\sqrt{5}+2=2\)

hay \(D=\sqrt{2}\)

13 tháng 3 2020
https://i.imgur.com/LeR5GY4.jpg

a: \(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

b: \(=\dfrac{\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)}{\sqrt{2}}\)

\(=\dfrac{3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}}{\sqrt{2}}\)

\(=\dfrac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)

22 tháng 7 2021

a)\(\sqrt{3\sqrt{2}-2\sqrt{3}}.\sqrt{3\sqrt{2}+2\sqrt{3}}\)

\(\sqrt{18-12}\)

\(\sqrt{6}\)

b) \(\sqrt{2+2\sqrt{2-\sqrt{2}}}.\sqrt{2-2\sqrt{2-\sqrt{2}}}\)

\(\sqrt{4-4\left(\sqrt{2-\sqrt{2}}\right)^2}\)

\(\sqrt{4-4.\left(2-4\sqrt{2}+2\right)}\)

\(\sqrt{4-8+16\sqrt{2}-8}\)

\(\sqrt{-12+16\sqrt{2}}\)

c) 

\(\left(\sqrt{2}-\sqrt{7}\right).\sqrt{9+2\sqrt{14}}\)

\(\left(\sqrt{2}-\sqrt{7}\right).\left(2+2\sqrt{7}.\sqrt{2}+7\right)\)

\(\left(\sqrt{2}-\sqrt{7}\right).\left(\sqrt{2}+\sqrt{7}\right)^2\)

\(\left(4-7\right).\left(\sqrt{2}+\sqrt{7}\right)\)

\(-3.\left(\sqrt{2}+\sqrt{7}\right)\)

23 tháng 6 2015

\(y=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)

\(y=1-\frac{1}{10}=\frac{9}{10}\)

25 tháng 7 2017

\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2-\sqrt{2+\sqrt{3}}}\)

\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2^2-\left(\sqrt{2+\sqrt{3}}\right)^2}\)

\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-2-\sqrt{3}}\)

\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}\)

\(=\sqrt{2^2-\sqrt{3}^2}=\sqrt{4-3}=1\)