K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 9 2020

\(\Leftrightarrow\sqrt{3\left(2x+1\right)^2+4}+\sqrt{\left(2x+1\right)^2}+\left(2x+1\right)^2=2\)

Do \(\left\{{}\begin{matrix}\sqrt{3\left(2x+1\right)^2+4}\ge2\\\sqrt{\left(2x+1\right)^2}\ge0\\\left(2x+1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow VT\ge2\)

Dấu "=" xảy ra khi và chỉ khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

Pt có nghiệm duy nhất \(x=-\frac{1}{2}\)