(\(\sqrt[3]{x^2+3x+3}\)+\(\sqrt[3]{2x^2+3x+2}\))=6x2+12x+8
mình cần gấp!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
a/ ĐKXĐ: \(2\le x\le10\)
\(\Leftrightarrow\sqrt{x-2}+\sqrt{10-x}-x^2+12x-20-20=0\)
Đặt \(\sqrt{x-2}+\sqrt{10-x}=a>0\)
\(\Rightarrow a^2=8+2\sqrt{-x^2+12x-20}\Rightarrow-x^2+12x-20=\frac{\left(a^2-8\right)^2}{4}\)
Phương trình trở thành:
\(a+\frac{\left(a^2-8\right)^2}{4}-20=0\Leftrightarrow a^4-16a^2+4a-16=0\)
\(\Leftrightarrow a^2\left(a-4\right)\left(a+4\right)+4\left(a-4\right)=0\)
\(\Leftrightarrow\left(a-4\right)\left(a^3+4a^2+4\right)=0\)
\(\Leftrightarrow a=4\) (do \(a^3+4a^2+4>0\) \(\) \(\forall a>0\))
\(\Leftrightarrow\sqrt{x-2}+\sqrt{10-x}=4\)
Mà \(\sqrt{x-2}+\sqrt{10-x}\le\sqrt{2\left(x-2+10-x\right)}=4\)
Dấu "=" xảy ra khi và chỉ khi \(x-2=10-x\Leftrightarrow x=6\)
b/ ĐKXĐ:...
Ta có:
\(VT=1.\sqrt{x^2+x-1}+1.\sqrt{x-x^2+1}\le\frac{1+x^2+x-1}{2}+\frac{1+x-x^2+1}{2}=x+1\)
\(\Rightarrow x^2-x+2\le x+1\)
\(\Leftrightarrow x^2-2x+1\le0\)
\(\Leftrightarrow\left(x-1\right)^2\le0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
a.
ĐKXĐ: \(x\le\dfrac{2}{3}\)
\(3x^2-7x+2-\left(1-\sqrt{2-3x}\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)-\dfrac{3x-1}{1+\sqrt{2-3x}}=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-2-\dfrac{1}{1+\sqrt{2x-3}}\right)=0\) (1)
Do \(x\le\dfrac{2}{3}\Rightarrow x-2< 0\Rightarrow x-2-\dfrac{1}{1+\sqrt{2-3x}}< 0;\forall x\in TXĐ\)
Nên (1) tương đương:
\(3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)
b.
ĐKXĐ: \(x\ge-\dfrac{1}{2}\)
\(18x^2+6x+3=9x\sqrt{6x+3}\)
Đặt \(\sqrt{6x+3}=y\ge0\) ta được:
\(18x^2+y^2=9xy\)
\(\Leftrightarrow18x^2-9xy+y^2=0\)
\(\Leftrightarrow\left(6x-y\right)\left(3x-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=3x\\y=6x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{6x+3}=3x\\\sqrt{6x+3}=6x\end{matrix}\right.\) (\(x\ge0\))
\(\Leftrightarrow\left[{}\begin{matrix}6x+3=9x^2\\6x+3=36x^2\end{matrix}\right.\) (\(x\ge0\))
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1+\sqrt{13}}{12}\end{matrix}\right.\)
1.
ĐKXĐ: ...
\(x^2-x+2=1\sqrt{x^2+x-1}+1\sqrt{x-x^2+1}\)
\(\Rightarrow x^2-x+2\le\dfrac{1}{2}\left(1+x^2+x-1\right)+\dfrac{1}{2}\left(1+x-x^2+1\right)\)
\(\Rightarrow x^2-2x+1\le0\)
\(\Rightarrow\left(x-1\right)^2\le0\)
\(\Rightarrow x=1\)
Thử lại ta thấy thỏa mãn
b.
ĐKXĐ: ...
Ta có:
\(VP=3\left(x-2\right)^2+2\ge2\)
\(VT=1\sqrt{2x-3}+1\sqrt{5-2x}\le\dfrac{1}{2}\left(1+2x-3\right)+\dfrac{1}{2}\left(1+5-2x\right)=2\)
\(\Rightarrow VT\le VP\)
Đẳng thức xảy ra khi:
\(\left\{{}\begin{matrix}x-2=0\\1=2x-3\\1=5-2x\end{matrix}\right.\) \(\Leftrightarrow x=2\)
Cách 1:
Với mọi x, ta có:
\(x^2+3x+3=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}>0;2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\)
Do đó: \(\sqrt[3]{x^2+3x+3}>0;\sqrt[3]{2x^2+3x+2}>0\)
Áp dụng bất đẳng thức Co-si cho 3 số:
\(\sqrt[3]{x^2+3x+3}=\sqrt[3]{\left(x^2+3x+3\right).1.1}\le\frac{x^2+3x+3+1+1}{3}=\frac{x^2+3x+5}{3}\)
\(\sqrt[3]{2x^2+3x+2}=\sqrt[3]{\left(2x^2+3x+2\right).1.1}\le\frac{2x^2+3x+4}{3}\)
\(\Rightarrow6x^2+12x+8\le\frac{x^2+3x+5}{3}+\frac{2x^2+3x+4}{3}=x^2+2x+3\)
\(\Rightarrow5x^2+10x+5\le0\Rightarrow5\left(x+1\right)^2\le0\Rightarrow x=-1\)
Vậy nghiệm của phương trình là x=-1
Cách 2:
Đặt \(a=\sqrt[3]{x^2+3x+3}>0;b=\sqrt[3]{2x^2+3x+2}>0\)
Phương trình trở thành: \(a+b=2a^3+2b^3-2\)
Lại có: \(\left(a+b\right)\left(a-b\right)^2\ge0,\forall a>0,b>0\Rightarrow2a^3+2b^3\ge\frac{1}{2}\left(a+b\right)^3\)
\(\Rightarrow a+b\ge\frac{1}{2}\left(a+b\right)^3-2\Leftrightarrow\left(a+b-2\right)\left[\left(a+b\right)^2+2\left(a+b\right)+2\right]\le0\)
\(\Leftrightarrow a+b\le2\)
Từ phương trình ban đầu ta còn có: \(a+b=6\left(x+1\right)^2+2\ge2\Rightarrow a+b=2\Rightarrow x=-1\)