K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 8 2021

a.

ĐKXĐ: \(x\le\dfrac{2}{3}\)

\(3x^2-7x+2-\left(1-\sqrt{2-3x}\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)-\dfrac{3x-1}{1+\sqrt{2-3x}}=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-2-\dfrac{1}{1+\sqrt{2x-3}}\right)=0\) (1)

Do \(x\le\dfrac{2}{3}\Rightarrow x-2< 0\Rightarrow x-2-\dfrac{1}{1+\sqrt{2-3x}}< 0;\forall x\in TXĐ\)

Nên (1) tương đương:

\(3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)

NV
6 tháng 8 2021

b.

ĐKXĐ: \(x\ge-\dfrac{1}{2}\)

\(18x^2+6x+3=9x\sqrt{6x+3}\)

Đặt \(\sqrt{6x+3}=y\ge0\) ta được:

\(18x^2+y^2=9xy\)

\(\Leftrightarrow18x^2-9xy+y^2=0\)

\(\Leftrightarrow\left(6x-y\right)\left(3x-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=3x\\y=6x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{6x+3}=3x\\\sqrt{6x+3}=6x\end{matrix}\right.\) (\(x\ge0\))

\(\Leftrightarrow\left[{}\begin{matrix}6x+3=9x^2\\6x+3=36x^2\end{matrix}\right.\) (\(x\ge0\))

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1+\sqrt{13}}{12}\end{matrix}\right.\)

3 tháng 8 2023

a) \(\sqrt{1-6x+9x^2}=9\)

\(\Leftrightarrow\sqrt{\left(1-3x\right)^2}=9\)

\(\Leftrightarrow\left|1-3x\right|=9\)

\(\Leftrightarrow\left[{}\begin{matrix}1-3x=9\\1-3x=-9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=1-9\\3x=1+9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=-8\\3x=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{8}{3}\\x=\dfrac{10}{3}\end{matrix}\right.\)

b) \(\sqrt{2x-3}-\sqrt{x+1}=0\) (\(x\ge\dfrac{3}{2}\))

\(\Leftrightarrow\sqrt{2x-3}=\sqrt{x+1}\)

\(\Leftrightarrow2x-3=x+1\)

\(\Leftrightarrow2x-x=1+3\)

\(\Leftrightarrow x=4\left(tm\right)\)

c) \(\sqrt{9x^2+12+4}-2=3x\)

\(\Leftrightarrow\sqrt{\left(3x+2\right)^2}=3x+2\)

\(\Leftrightarrow\left|3x+2\right|=3x+2\)

\(\Leftrightarrow3x+2\ge0\)

\(\Leftrightarrow3x\ge-2\)

\(\Leftrightarrow x\ge-\dfrac{2}{3}\)

a: =>|3x-1|=9

=>3x-1=9 hoặc 3x-1=-9

=>x=-8/3 hoặc x=10/3

b: =>căn 2x-3=căn x+1

=>2x-3=x+1

=>x=4

c: =>|3x+2|=3x+2

=>3x+2>=0

=>x>=-2/3

f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)

\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)

\(\Leftrightarrow\left|x+1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)

\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

14 tháng 11 2021

\(a,ĐK:x\ge-\dfrac{1}{2}\\ PT\Leftrightarrow\sqrt{3x+4}=\sqrt{2x+1}+1\\ \Leftrightarrow3x+4=2x+2+2\sqrt{2x+1}\\ \Leftrightarrow x+2=2\sqrt{2x+1}\\ \Leftrightarrow x^2+4x+4=8x+4\\ \Leftrightarrow x^2-4x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\\ b,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{2x-1}=2\sqrt{x-1}-1\\ \Leftrightarrow2x-1=4x-3-4\sqrt{x-1}\\ \Leftrightarrow2x-2-4\sqrt{x-1}=0\\ \Leftrightarrow x-1-2\sqrt{x-1}=0\\ \Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-1=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

a. 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$

$\Leftrightarrow \sqrt{2x}=3$

$\Leftrightarrow 2x=9$

$\Leftrightarrow x=\frac{9}{2}$ (tm)

b.

ĐKXĐ: $x\geq -2$

PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$

$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$

$\Leftrightarrow 3\sqrt{x+2}=15$

$\Leftrightarrow \sqrt{x+2}=5$

$\Leftrightarrow x+2=25$

$\Leftrightarrow x=23$ (tm)

 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

c.

$\sqrt{(x-2)^2}=12$

$\Leftrightarrow |x-2|=12$

$\Leftrightarrow x-2=12$ hoặc $x-2=-12$

$\Leftrightarrow x=14$ hoặc $x=-10$

e.

PT $\Leftrightarrow |2x-1|-x=3$

Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$

$\Leftrightarrow x=4$ (tm)

Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$

$\Leftrightarrow x=\frac{-2}{3}$ (tm)

 

6 tháng 8 2021

a, ĐK: \(x\ge0\)

\(\sqrt{2x}-\sqrt{50}=0\)

\(\Leftrightarrow\sqrt{2x}=\sqrt{50}\)

\(\Leftrightarrow2x=50\)

\(\Leftrightarrow x=25\left(tm\right)\)

6 tháng 8 2021

b, ĐK: \(x\in R\)

\(\sqrt{3x^2}-\sqrt{12}=0\)

\(\Leftrightarrow\sqrt{3x^2}=\sqrt{12}\)

\(\Leftrightarrow3x^2=12\)

\(\Leftrightarrow x=\pm2\)

26 tháng 10 2023

a: ĐKXĐ: x>=-3/2

\(\sqrt{x^2+4}=\sqrt{2x+3}\)

=>\(x^2+4=2x+3\)

=>\(x^2-2x+1=0\)

=>\(\left(x-1\right)^2=0\)

=>x-1=0

=>x=1(nhận)

b: \(\sqrt{x^2-6x+9}=2x-1\)(ĐKXĐ: \(x\in R\))

=>\(\sqrt{\left(x-3\right)^2}=2x-1\)

=>\(\left\{{}\begin{matrix}\left(2x-1\right)^2=\left(x-3\right)^2\\x>=\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(2x-1-x+3\right)\left(2x-1+x-3\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x+2\right)\left(3x-4\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)

=>x=4/3(nhận) hoặc x=-2(loại)

c:

Sửa đề: \(\sqrt{4x+12}=\sqrt{9x+27}-5\)

ĐKXĐ: \(x>=-3\)

\(\sqrt{4x+12}=\sqrt{9x+27}-5\)

=>\(2\sqrt{x+3}=3\sqrt{x+3}-5\)

=>\(-\sqrt{x+3}=-5\)

=>x+3=25

=>x=22(nhận)

d: ĐKXĐ: \(\left[{}\begin{matrix}x< =\dfrac{3-\sqrt{5}}{4}\\x>=\dfrac{3+\sqrt{5}}{4}\end{matrix}\right.\)
\(\sqrt{4x^2-6x+1}=\left|2x-5\right|\)

=>\(\sqrt{\left(4x^2-6x+1\right)}=\sqrt{4x^2-20x+25}\)

=>\(4x^2-6x+1=4x^2-20x+25\)

=>\(-6x+20x=25-1\)

=>\(14x=24\)

=>x=12/7(nhận)

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

a. ĐKXĐ: $x\geq 2$ hoặc $x=1$

PT $\Leftrightarrow \sqrt{(x-1)(x-2)}=\sqrt{x-1}$

$\Leftrightarrow \sqrt{x-1}(\sqrt{x-2}-1)=0$

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-1}=0\\ \sqrt{x-2}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=3\end{matrix}\right.\) (đều thỏa mãn)

b.

PT $\Leftrightarrow \sqrt{(x-2)^2}=\sqrt{(2x-3)^2}$

$\Leftrightarrow |x-2|=|2x-3|$

\(\Leftrightarrow \left[\begin{matrix} x-2=2x-3\\ x-2=3-2x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=\frac{5}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

c. ĐKXĐ: $x=2$ hoặc $x\geq 3$

PT $\Leftrightarrow \sqrt{(x-2)(x-3)}=\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}(\sqrt{x-3}-1)=0$

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x-3}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=4\end{matrix}\right.\) (đều tm)

d.

PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$

$\Leftrightarrow |2x-1|=|x-3|$

\(\Leftrightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)